

Evaluation of the use of Automation in Malware
Analysis

Stuart Rankin, 1701198

BSc Ethical Hacking, 2021

School of Design and Informatics
Abertay University

 i

Table of Contents

Table of Figures ... iii

Table of Tables ... v

Acknowledgements .. vi

Abstract ... viii

Abbreviations, Symbols and Notation ... x

1 Introduction ... 1

1.1 Background and Context ... 1

1.2 Research Question .. 2

1.3 Aims ... 3

1.4 Structure .. 3

2 Literature Review ... 4

2.1 Malware Analysis Issues .. 4

2.2 Existing Tools .. 5

2.3 State-of-the-Art Malware .. 7

2.4 Summary ... 9

3 Methodology ... 10

3.1 Research Stage ... 10

3.2 Setup ... 10

3.2.1 Requirements ... 10

3.3 Static Analysis ... 11

3.3.1 Basic Script ... 11

3.3.2 FLOSS .. 11

3.3.3 CAPA .. 12

3.3.4 PEFile ... 12

3.3.5 VirusTotal ... 13

3.3.6 Suspicious .. 13

3.4 Dynamic Analysis .. 15

3.5 VM Hardening .. 18

 ii

3.6 Testing ... 22

4 Results ... 23

4.1 Developed Tool .. 23

4.2 Cuckoo Sandbox ... 24

4.3 VirusTotal ... 25

5 Discussion .. 26

5.1 Samples ... 26

5.2 Tools .. 31

6 Conclusion .. 33

6.1 Future Work ... 35

List of References ... 37

Appendices ... 41

Appendix A .. 41

Hello World .. 41

PAFish ... 42

WannaCry .. 44

Mass Logger .. 45

Upatre .. 47

Chthonic... 49

Unnamed Malware ... 50

Appendix B .. 53

Hello World .. 53

PAFish ... 54

WannaCry .. 55

Mass Logger .. 56

Upatre .. 57

Chthonic... 58

Unnamed Malware ... 59

 iii

Table of Figures

Figure 1. Total Malware Infections 2009-2018 (PurpleSec, 2021). 1

Figure 2. retoolkit's tool folder (github, 2021a). ... 5

Figure 3. COVID-19 Phishing (McAfee, 2020) .. 9

Figure 4. FLOSS Suspicious Results of WannaCry. 14

Figure 5. CAPA Suspicious Results of WannaCry. 14

Figure 6. IPv4 Adapter Settings .. 16

Figure 7. PAFish Results. ... 19

Figure 8. Device Manager. .. 20

Figure 9. Regedit. ... 21

Figure 10. PAFish Results Post-Mitigation 1/2. 22

Figure 11. PAFish Results Post-Mitigation 2/2. 22

Figure 12. HelloWorld Cuckoo Sandbox Summary. 25

Figure 13. Unnamed Sample FLOSS & CAPA highlights. 30

Figure 14. Automa HelloWorld Highlights. .. 41

Figure 15. Automa PAFish Highlights. .. 42

Figure 16. PAFish INetSim. .. 43

Figure 17. Automa WannaCry Highlights. ... 44

Figure 18. Automa MassLogger Highlights. .. 45

Figure 19. MassLogger INetSim ... 46

Figure 20. Automa Upatre Highlights. ... 47

Figure 21. Upatre Rifle.pdb String. .. 48

Figure 22. Automa Chthonic Highlights. .. 49

Figure 23. Automa Unnamed Highlights 1/2. .. 50

Figure 24. Automa Unnamed Malware 2/2. .. 51

Figure 25. CAPA debugger. .. 51

Figure 26. CAPA Network. .. 51

Figure 27. Unnamed Malware INetSim. .. 52

Figure 28. HelloWorld Cuckoo Sandbox. .. 53

Figure 29. PAFish Cuckoo Sandbox. .. 54

Figure 30. WannaCry Cuckoo Sandbox. ... 55

Figure 31. MassLogger Cuckoo Sandbox. .. 56

Figure 32. Upatre Cuckoo Sandbox. ... 57

 iv

Figure 33. Chthonic Cuckoo Sandbox. ... 58

Figure 34. Unnamed Malware Cuckoo Sandbox. 59

 v

Table of Tables

Table 1. Automa Tool Results ... 23

Table 2. Automa Suspicious Items .. 24

 vi

Acknowledgements

Firstly, I would like to thank my supervisor, Ross Heenan for his guidance

and support throughout this project.

I would also like to thank my friends and family for their help in making

these the best years of my life so far.

 vii

Dedicated to the memory of my dad. If I had been half as hard-working, I

am sure this would have been finished a lot sooner.

 viii

Abstract

Malware analysis has become more relevant as malware continues to

become more advanced. It provides a useful role in the understanding of

how malware works which can help to stop or prevent future attacks.

However, malware analysis can be time-consuming and difficult,

especially for the inexperienced. Therefore, analysis tools have been

developed to help. Though these typically have limitations especially

when dealing with malware that utilise anti-analysis techniques.

This project aims to develop an automation tool for malware analysis

including the detection and mitigation of anti-analysis techniques

employed by malware. The tool will also be tested with other available

automated malware analysis tools and compared.

The tool was developed for Linux using Python 3 and implemented

various malware analysis tools. The static analysis component utilised

tools such as FLOSS, CAPA, PEFile and Unipacker. The dynamic and

memory analysis functionality used VirtualBox, Volatility, PE-Sieve and

INetSim. The resulting data from the tools was formatted and output to an

HTML report. To evaluate the effectiveness, it was tested with 7 samples

of varying functionality. To help compare, these samples were also tested

on Cuckoo Sandbox and VirusTotal.

The tool was found to have varying effectiveness on the samples, with a

number of tools having false positives. It did succeed in mitigating anti-

analysis techniques with multiple samples. VirusTotal detected every

sample as malicious despite the test set containing non-malicious

samples. Cuckoo Sandbox would likely have performed better if the

documentation had covered virtual machine hardening.

The project identified the issues with current malware analysis. It also

highlighted the limitations with Cuckoo Sandbox, including its

documentation, setup process and reporting. The testing also showed

 ix

how malware analysis requires human input with VirusTotal’s 100%

detection rate of the test set. With further development and improvements

made the tool could greatly aid malware analysts.

 x

Abbreviations, Symbols and Notation

Malware Malicious Software

PE Portable Executable

RWX Read, Write, Execute

VAD Virtual Address Descriptor

PID Process ID

C2 Command & Control

VM Virtual Machine

 1

1 Introduction

1.1 Background and Context

Ever since the advent of the Creeper Worm in 1971, malware has

continued to develop and become an ever-increasing, more sophisticated

problem. It has evolved into a never-ending game of cat and mouse

between the malware developer and those developing protection from

these threats such as anti-virus developers. With the total malware

infections being on the rise in the last ten years as can be seen in Figure

1, it is likely to continue growing. Malware is also extremely costly to the

victims, for example, ransomware attacks alone are estimated to cost $6

trillion annually by 2021(PurpleSec, 2021). For example, the NotPetya

attack in 2017 was estimated by a White House assessment to have

caused $10 billion dollars in damage. (InfoTransec, 2019)

Figure 1. Total Malware Infections 2009-2018 (PurpleSec, 2021).

In response, software such as anti-virus tools and intrusion detection

systems have been developed. These however do little to protect

systems and networks once an attack has happened and malware has

successfully infected a device. Organisations have therefore started

creating incident response teams. One key element of this is malware

analysis which can allow the team to gain an understanding of what the

malware is doing and what it can do. Malware analysis can be incredibly

useful, both in incident response and by discovering how a threat works

mitigations can be developed and damage caused by an attack reduced.

 2

One key example of this is that of WannaCry where an analyst was able

to gain key insight into how WannaCry used a URL as a kill switch and

register the domain to stop further spread (Wired, 2017).

Typically, malware analysis is split into two categories, static analysis and

dynamic analysis. Static analysis pertains to analysis of the malware’s

binary, looking at the code and walking through it with the use of tools

such as debuggers. Advanced static analysis includes reverse-

engineering of the sample to discover exactly what it is doing. Dynamic

analysis (or sometimes known as behavioural analysis) involves

analysing how the malware behaves once it has been executed, typically

by running it on a safe environment such as a virtual machine or a

network-isolated PC.

A third type of analysis, memory analysis, has become more relevant in

recent years with the increased prevalence of file less and memory

malware. Memory analysis includes the examination of the test PC’s

memory for any malicious or suspicious elements. A computer’s memory

can often persist for a long time after an action. It also allows the

possibility of extracting artefacts completely independently from the

system, reducing the likelihood of malware interfering with the results

(Ligh et al., 2014)

Malware analysis typically requires a deep understanding of many areas

such as malware, reverse-engineering, memory and networking. An

understanding of many tools that may be used in the analysis process is

also required. There has therefore been a demand for the development of

tools that can help aid a malware analyst with the use of ideas such as

automation.

1.2 Research Question

The research question for this was project was to investigate how

automation of malware analysis tools can aid in the detection and

analysis of malware samples.

 3

1.3 Aims

The aims of this project were:

• To research and investigate current malware analysis methods

and tools.

• To develop a tool that successfully allows for the automation of

various malware analysis tools including static, dynamic and

memory analysis tools.

• To test and compare with other available malware analysis tools

on a test set of samples that also utilise anti-analysis techniques.

1.4 Structure

Chapter 2 explores previously completed research related to this project

including malware analysis techniques and tools, as well as the issues

involved with them and the current state of malware.

The methodology covered in Chapter 3 discusses the process that was

followed throughout the development stage, including the implementation

of the static analysis tools, the virtual machine set-up, dynamic analysis

tools and the hardening of the virtual machine.

After the methodology the results of the testing will be provided and the

discussion of the found results follows. Chapter 6 highlights any

conclusions and any possible future work from this project.

 4

2 Literature Review

The following chapter examines existing issues with malware analysis. As

well as this, existing analysis tools were discussed with an emphasis on

their limitations. Finally, a discussion on the current state of malware.

2.1 Malware Analysis Issues

Malware analysis has its limitations. The main one previously stated is that

malware analysis typically requires a deep knowledge of techniques, effort

and skill from the reviewer (Vasilescu, Gheorghe and Tapus, 2014). Static

analysis specifically requires knowledge of assembly language and an

understanding of the underlying operating system (Uppal, Mehra and

Verma, 2014). Due to the time it takes to perform this type of analysis, with

the rate of new malware being produced, the field requires automation in

order to keep up (Yin and Song, 2012).

According to Gadhiya and Bhasvar one of the biggest limitations with

static analysis is the fact the source code of malware samples are not

readily available. This reduces the analysis techniques to those that

retrieve information from the binary representation of the sample

(Gadhiya and Bhavsar, 2013). Static Analysis at machine-code level can

also be extremely difficult due to code-obfuscation techniques such as

compression, encryption or self-modification (Willems, Holz and Freiling,

2007). Malware authors will know of the limitations of static analysis and

will develop malware specifically designed to abuse these limitations.

One issue that dynamic analysis runs into is when malware utilises

trigger-based behaviour. Trigger-based behaviour is what it sounds like,

simply the malicious file will not perform any malicious behaviour until a

trigger is activated. There are various techniques that can be used as a

trigger for malware, anything from a date and time to a command

received from a server. (Selçuk, Orhan and Batur, 2018). Dynamic

analysis will typically fail to correctly analyse the file due to the fact that

unless it by chance analyses the file whilst the trigger happens the

 5

sample may seem non-malicious. The process of using static analysis to

detect the trigger on the other hand, whilst theoretically possible, would

be a massive effort for most samples particularly due to most malware

implementing further defensive features that would protect it against static

analysis.

2.2 Existing Tools

There exist tools not as widely used such as inhale (github, 2020a), which

attempts to analyse and classify malware samples. Whilst a beta release,

this tool has obvious limitations in that it only covers static analysis and

fails to cover dynamic or memory analysis. There are many tools which

fail to offer a hybrid analysis.

Toolkits are also popular by analysts, for example retoolkit (github,

2021a), which once installed creates the folder found in Figure 2. Whilst

these tools can be useful it has the same issues as malware analysis in

that it still requires knowledge and an understanding of malware analysis

techniques and tools to effectively utilise them.

Figure 2. retoolkit's tool folder (github, 2021a).

 6

Tools such as DRAKVUF (DRAKVUF, no date) can provide useful

functionality, such as in-depth execution tracing of arbitrary binaries,

which can be nearly undetectable from the perspective of the malware.

The main problem with this tool is in its hardware limitations, it requires

an Intel CPU with VT-x (Intel Virtualisation software) and Extended Page

Tables.

One of the most popular automated malware analysis tools is that of

Cuckoo Sandbox. Cuckoo Sandbox is an open source malware analysis

system that began development in 2010. Malware can avoid analysis by

successfully detecting that it is running within a Cuckoo Sandbox

environment. One of the easiest ways is simply through the use of shared

folder detection. Cuckoo uses a folder on the guest system to share

information to the host. By default, on a Windows guest machine the

default is C:\Cuckoo. Malware could simply search for a folder of that

name containing any possible code and then pause any malicious activity

if it does. Another method is pipe detection, due to the fact that Cuckoo’s

pipe name between the host and guest system is hard coded, malware

could quickly check for its presence. Cuckoo also uses an agent python

file to handle functionality on the guest machine. Python is a popular

language however it is unlikely to find it running on an actual machine.

Malware could look for python.exe or pythonw.exe in the running

processes. (Ferrand, 2015).

A common technique by malware is to attempt to detect whether it is

running in a virtual machine and if the malware finds that it is, it will act

benignly. This technique can also be utilised against Cuckoo Sandbox

due to its use of virtual machines for dynamic analysis. Typically, virtual

machines are detected through hardware information. Malware checks for

items such as MAC Addresses being the same as the default for various

virtualisation software i.e VirtualBox or VMWare. (Lindorfer, Kolbitsch and

Comparetti, 2011). It can also check for information such as unusual

RAM sizes, storage sizes, odd number of cores etc. All of these can help

 7

paint a picture of the environment for the malware to decide if it should

act maliciously or not.

One of the unique issues with online public malware analysis tools is that

malware developers could submit a decoy sample which retrieves the IP

address of the analysis machines. This could then be utilised by malware

to create a blacklist for which malware would not run if it was on one

these IPs. (Yoshioka, Hosobuchi, Orii and Matsumoto, 2010)

Whilst a lot of sandboxes and malware analysis tools utilise VMs that

malware could detect, one unique possible issue with Cuckoo Sandbox is

its open-source nature. The majority of tools are closed source and how

they work is often kept close to the chest by anti-malware companies.

This would allow an attacker to more easily design a malware to detect or

escape Cuckoo Sandbox. It could also be used to develop a separate

method of evading analysis. Rather than simply acting non-maliciously

once it has detected it is in an analysis environment tools can be

developed to crash the analysis environment such as anticuckoo (github,

2018). Whilst this might cause an analyst to look more closely at the

sample, it could also cause the analyst to have to spend time and money

testing Cuckoo Sandbox and implementing new environments in an

attempt to find the problem. In that time the malware could have caused a

lot more damage. It also is useful due to the fact that Cuckoo Sandbox is

often used on samples already known to be malicious to attempt to get a

further understanding and by crashing the environment it prevents this

dynamic assessment.

2.3 State-of-the-Art Malware

Stuxnet was arguably the first malware to show the large damage that is

possible to the world with specifically designed malware. It was the first

discovered malware to spy on and subvert industrial systems. Discovered

in 2010, believed to be developed by the USA with support from Israel. It

was designed specifically to slow the Iranian nuclear program.

Researchers estimated the effort of Stuxnet to be around 5-10 developers

 8

working for six months full-time with access to Scada systems. (Chen and

Abu-Nimeh, 2011).

Unlike most common worms it utilised 4 Zero-Day exploits to spread,

these methods included USB drives, shared printers and two other

vulnerabilities regarding privilege escalation. It targeted PCs running

Windows and once it had infected the PC, utilised stolen certificates to

download the rootkit and tools for controlling Siemens Simatic

WinC/Step-7 software. From here it could access the controllers for

industrial devices and launch its attack. The attack was simply changing

the speed of the nuclear centrifuges’ rotors. This caused irreparable

damage and delayed Iran’s nuclear program significantly (Baezner and

Robin, 2017).

A more recent example of a malware developed by state actors comes

from the family of malware, “Foudre”. An evolution of the previously

known “Infy” malware, the infection vector is a simple spear-phishing

email with a malicious Word or PowerPoint document. The malware is

known to target dissidents and enemies of the Iranian state, hacking only

a handful of targets (Baezner, 2019). It typically performs mostly common

attacks such as keylogging, capturing the clipboard data and system

information such as browser data. The most notable feature of this attack

was when Palo Alto Networks took down the C2 domains using a DNS

sinkhole, the Telecommunication Company of Iran blocked Palo Alto

Networks through the use of DNS tampering and HTTP filtering

(Checkpoint Research, 2021).

Even AstraZeneca has been the target of a nation state attack during the

COVID-19 pandemic after suspected North Korean hackers targeted

them. The attackers posed as recruiters and approached staff with job

offers and documents that would run malicious code when opened. Whilst

there was no specifically designed malware utilising zero-days, this case

shows how prevalent malware is and how necessary analysis of any files

received is. (Stubbs, 2020).

 9

COVID-19 was exploited not just by state actors, with the move to remote

working attackers began using it as an opportunity to launch themed

attacks. As well as this, attackers targeted remote-workers due to the

likelihood of files being stored insecurely at home that previously would

have been stored in the company network. (Wang et al, 2020). One

example of the type of COVID-19 themed phishing malware attacks can

be seen below in Figure 3.

Figure 3. COVID-19 Phishing (McAfee, 2020)

2.4 Summary

The research covered within this chapter has focused on the common

issues with malware analysis techniques, the current tools that have been

developed as well as their failings. It also sets out the current state of

malware and highlights the damage that it can cause and the necessity of

automation tools. This project builds upon this necessity and failings of

other tools.

 10

3 Methodology

3.1 Research Stage

The initial phase of the methodology was focused on investigating and

researching current available tools, including papers and journal articles.

This included tools such as Cuckoo Sandbox, REMnux and FLARE VM.

3.2 Setup

3.2.1 Requirements

This project was developed using an iterative prototyping approach. The

design for the tool was limited at the start to prevent the prototype of the

tool being over developed and out of scope. It was limited to Windows

Malware in a PE (Portable Executable) format. Therefore, the tool is not

designed to work with any Linux or MacOS malware or any malware that

comes in different forms such as PDFs or Microsoft Office file types.

The tool was developed in a Debian 10 Virtual Machine due to the high

risk of damage when dealing with live malware samples. Debian was

chosen because of its slow update policy leading to the unlikely chance

that the tool’s dependencies would be updated mid-development. It was

also chosen due to the fact that a lot of malware analysis tools are

developed with Linux in mind and therefore there are more available as

well as more documentation.

The specifications of the PC were an AMD Ryzen 7 2700X, Gigabyte

GeForce GTX 1080 WINDFORCE OC and 16GB of 3200MHZ RAM. The

Debian VM was allocated 4 Cores and 8Gb of RAM. The ISO was

downloaded from the official source and installed following

documentation.

 11

3.3 Static Analysis

3.3.1 Basic Script

Initially a basic script was created, “automa.py” (Automated Malware

Analysis), this used Python’s argparse to allow for the user to pass in a

filename for the sample. Python’s OS library was also used to check the

file existed.

The tool was designed to have a class of type “Sample”, this allowed for

multiple files to be passed into the script if the user had need for it. The

class developed to have various variables such as name, md5, size and a

list of suspicious items. This allowed for the analysis functions in the

script to use objects of this class to easily analyse multiple files.

Automa.py also had a report functionality that used Python’s file

functionality to save an HTML report to the “reports” directory. Most of

this functionality was later separated into the file “formatter.py” to simplify

the main file.

3.3.2 FLOSS

The first tool that was developed into the project was that of FireEye’s

FLOSS (FireEye Labs Obfuscated String Solver). This is an expansion on

the basic “strings” functionality that comes with any Linux operating

system. It attempts to de-obfuscate any strings it finds in the sample

binary. Whilst packing is a common technique by malware authors to hide

malicious activity, it can often lead to easy detection due the fact that

packing is not a very common technique for benign executables. More

advanced techniques include encoding specific strings without encoding

the entire file (FireEye, 2016). This was installed to the Debian VM using

pip, this added floss to the Python’s path and could be run from command

line. The script then ran FLOSS by using the OS library’s system method

which provides the ability to run commands as if on the command line.

 12

The first iteration simply printed the result of FLOSS on the sample but

was later changed to saving the results as a json string in the sample

object. This could then be used to output in the HTML report as a table.

3.3.3 CAPA

The second tool that was added was another FireEye tool, CAPA. CAPA

attempts to detect the capabilities and functionality of either a portable

executable or shellcode. Unlike FLOSS the tool could not be installed

using pip, instead the standalone binary was downloaded and moved to

the tool location (github, 2021b). The tool was run by automa using a

similar method of OS’s system. It outputted to a temporary file,

“capa.json” that would then be read and made an object variable. This

was also output JSON so that it could be easily converted to the HTML

report.

After initial testing it was found that CAPA struggled with binaries that

were packed. To deal with these binaries the tool unipacker was used.

This is a tool that attempts to unpack a given binary. It supports the most

common packers such as UPX, ASPack, FSG (github, 2021c). This was

also installed like FLOSS using pip to add it to the Python $PATH.

Automa was developed so that if CAPA found a sample to be packed, the

sample would then attempt to be unpacked using OS module to run

unipacker on the sample. Once this was done CAPA would run on the

unpacked version of the sample the exact same way, saving to the

sample object variable.

3.3.4 PEFile

For a more in-depth and advanced data dump which could be analysed

PEFile was used. PEFile is a Python module that can parse and work

with Portable Executable files. It requires some understanding of PE file

formats but has functionality such as inspecting headers, packer

detection, warnings for suspicious and malformed values (github, 2021d).

 13

It was simply installed using pip and included in the automa file. The

sample would be used to create a PE object using pe = pefile.PE(sample).

This could then utilise PEFiles functions such as pe.dump_info(). The

relevant data was saved to the sample object’s variables to later be used

when outputting the HTML report.

3.3.5 VirusTotal

VirusTotal is an online tool that provides the ability to upload samples,

which can then be scanned and provide information on whether various

Anti-Virus software detected them as malicious or not. VirusTotal also

offers an API for ease of use, as well as this there is an official library for

VirusTotal, vt-py (github, 2021e). This was installed using pip and

imported into the automa file. The MD5 of the sample was calculated

using the tool md5sum. This was then used with the VirusTotal API to

check whether the file had already been tested and if so, the data was

received from VirusTotal. If not, the file was uploaded, scanned and then

the data was received. VirusTotal like most APIs require an API Key, for

this a personal VirusTotal account was used to generate one. However,

this would not work if the tool was to be publicly released, one solution

would be to ask the user for their own personal key or to use the private

API which has a cost. The data returned from the API used JSON so

could easily be implemented into the final report.

3.3.6 Suspicious

A key element of the report is the suspicious section. This is the section

near the top of the file which contains the items the tools found that

Automa has found to be of interest and that the user is likely to as well.

Due to each analysis tool being different, the way Automa selected what

was of interest varied. For FLOSS a wordlist was created. This file could

easily be edited to add or change more words by the user. This was then

used to find any strings found by FLOSS that contained words from the

wordlist. The words in the wordlist were created to try and catch the most

items and are therefore not extremely specific. For example, in the

wordlist is “mal” this is to catch any string containing mal, so malware,

 14

malicious, malloc (C function for memory allocation). This can lead to

false positives as seen below in Figure 4 whilst malloc could be used by

malicious application, it is also an extremely common function.

Figure 4. FLOSS Suspicious Results of WannaCry.

For CAPA, it utilised specific YARA rules to determine the capabilities. In

the resulting JSON file these were split based on the set of rules used.

The main way in which serious functionality was determined was using

MITRE’s ATT&CK and was labelled based on that. Therefore, to report

capabilities of note that were not just basic functionality any capabilities

labelled ATT&CK were reported in the suspicious section. An example

output can be seen in Figure 5.

Figure 5. CAPA Suspicious Results of WannaCry.

PEFile has a function simply named get_warnings. This ran when the

sample was passed to PEFile and if there were any results these were

simply reported in the suspicious section.

If any of the tools on VirusTotal find the sample malicious these are

stated in the suspicious section.

 15

3.4 Dynamic Analysis

For dynamic analysis a Windows 7 VM was used. This VM was sourced

from Microsoft who offer a publicly available VM that expires after 90

days (Microsoft, 2021).

This was run using Oracle’s VirtualBox within the Debian VM machine.

The machine’s network was initially set as NAT to allow internet access

which was made use of to install any necessary tools such as Python.

Python 3.9 does not support Windows 7 and therefore Python 3.8.9 was

installed.

A NAT network adapter is not suitable for malware usage. This is due to

the fact it can access the internet and be used to spread or escape from

the VM. The recommended adapter type for malware analysis is Host-

Only. This required the setup of a virtual network adapter. This was done

by navigating to File > Host Network Manager and creating an adapter.

The IP Address/Mask was set as 192.168.56.1/24 and from there the VM

could be changed over a host-only type and connected to this virtual

adapter. The VM network settings also have to be changed from within

the machine. For Windows 7 this is done by changing the adapter

settings this can be found by navigating Control Panel > Network and

Internet > Network and Sharing Center > Change adapter settings. By

right-clicking, clicking Properties and then in the “Internet Protocol

Version 4 (TCP/IPv4)” properties, the IP address and DNS server can be

manually set. These were set up as can be seen in Figure 6.

 16

Figure 6. IPv4 Adapter Settings

This only allowed communication between the Host and the VM which

was needed for functionality such as file transfer and analysis data

transfer. To do this however an agent had to be developed to handle this

on the VM side.

On the host machine sockets.py was developed which utilised Python’s

socket module. This had two main functions, send and receive. The send

function took the parameter of a file which was to be sent to the VM and

the receive function would write out the file it received from the VM to the

host. Whilst it may be possible for the malware to escape by exploiting

this method, it would have to be a state-of-the-art designed malware due

to the understanding of how the communication works and because of

the two different OSs. A similar file was developed with the same

functionality on the VM. This allowed for samples to be sent from the host

to the VM and for relevant files to be sent back. On the VM another file

was developed analyser.py. This was used to run the received sample

and track its PID for use in tools. This sockets.py file was run and then

the snapshot was saved so that when the VM was reset for the next

 17

sample, the user did not need to log in to the VM and run the sockets file

each time to receive the sample.

The VM was temporarily set back to NAT to install procmon and pe-sieve

before being set back up as Host Only. Initially procmon was installed on

the VM for use in analysis but was not used after the introduction of

volatility which was able to perform essentially the same role with more

functionality. The first plan was to use moneta over pe-sieve but moneta

failed to work on Windows 7 and so instead pe-sieve was employed. Pe-

sieve can scan memory for a given process and attempt to detect any

malicious implants such as replaced/injected PEs, shellcodes, hooks and

in-memory patches (github, 2021f).

Analyser.py used the OS module to run pe-sieve passing the PID from

the sample and setting it to dump JSON to the file “pe-sieve.json”. Once

this was done sockets.py would attempt to send pe-sieve.json to the host

for inclusion in the report. Any detections by pe-sieve would be included

in the suspicious section of the report.

One key feature of a lot of malware is network functionality, whether this

is to reach a command & control server or to spread to more machines.

This VM as previously discussed was Host Only and could not access the

wider net. To analyse any network traffic INetSim was installed (INetSim,

2021). INetSim is a software suite for simulating common internet

services. It has a lot of useful features, for example a sample requested a

“jpeg” file rather than returning useless data, it would work and send a

generic jpeg back in an attempt to keep the sample functioning. The

functionality was included in the automa.py file using OS to run prior to

sending the sample to the VM and then shutting it down once the pe-

sieve data had been returned or errored out. Once it was shutdown

INetSim would generate a report if there had been any traffic, to which

Automa would add to the final report. Due to the virtual network adapter

having the IP 192.168.56.1 the configuration file for INetSim had to be

changed from 127.0.0.1.

 18

As previously stated, Volatility Framework was added to provide more

detailed memory analysis. Volatility is a collection of tools for the

extraction of artefacts from volatile memory samples (github, 2020b).

Volatility requires a memory dump to work on for this, VirtualBox provides

a useful feature of being able to dump the memory of a live VM using the

command “VBoxManage debugvm VirtualMachineName dumpvmcore –filename=dump.elf”.

This outputs the memory dump to dump.elf for whatever virtual machine

is given as VirtualMachineName. There have been many customised and

user-built plugins that can be downloaded and implemented. For use in

Automa, a set of plugins were downloaded, “Volatility-Plugins” (github,

2021g).

Using Volatility’s documentation these were imported. The first one used

RAMSCAN, lists the running processes with their PID and Parent PID

and then checks what the virtual address descriptor (VAD) is set to. If the

VAD is set to Read, Write and Execute it is marked as suspicious by

RAMSCAN. The second one used is CMDCHECK which scans the

memory for cmd.exe and checks the standard handles. If cmd.exe is

being used for malicious activity such as data exfiltration, it is likely the

handles will change and so this can be a good way to check for

backdoors or modifications.

3.5 VM Hardening

The virtual machine for dynamic analysis was initially set up without any

hardening techniques employed. With some malware utilising VM

detection techniques as a way to prevent analysis or to escape the VM

and infect the host machine, it is necessary to harden the VM. There exist

many tools that use the same techniques implemented by malware to try

and detect VMs. One of these, pafish (github, 2019), was used to find

how malware could detect the VM. Pafish is a tool that attempts to detect

sandboxes and analysis environments whilst also displaying which

techniques successfully found evidence of a VM. This was downloaded

 19

onto the Windows 7 VM and run, the result of this can be seen in Figure

7.

Figure 7. PAFish Results.

Each line with the red “traced” indicates that the tool detected a VM using

that method. As can be seen there were many detections. The first step

was to simply change some Virtual Machine settings. The MAC address

 20

was changed from a standard VirtualBox address to a generated MAC

address that would not be detected by a list of common VM MAC

addresses. The amount of RAM allocated did not need to be adjusted as

it was already more than 1GB. The CPU was allocated another core to

prevent detection and another for better performance, for a total of 3

virtual cores. The virtualisation settings were also changed, Nested VT-

x/AMD-V was disabled and the paravirtualization interface was set to

none. The next step was to uninstall VirtualBox’s guest tools, this was

installed initially as it provides useful features that help the machine

perform better and more like a PC, however it installs drivers that can be

detected. This was uninstalled following VirtualBox’s documentation, one

driver was left behind that was still helping pafish detect, “Base System

Device” which can be found in Figure 8 which was removed.

Figure 8. Device Manager.

The next stage was to edit some of the registry keys in the Windows 7

machine. The main ones changed were SystemBiosDate,

SystemBiosVersion and VideoBiosVersion. This was done using regedit

as can be seen in Figure 9. The Bios date was changed to a more

 21

realistic date of 2019 rather than 1999. SystemBiosVersion and

VideoBiosVersion removed any instances of VBox or VirtualBox and

replaced with “Gigabyte” that the host machine’s keys contained. The

keys in DSDT\VBOX_, FADT\VBOX_, RSDT\VBOX_ were simply

removed. These reset on reboot and so the snapshot previously saved

was updated to include these edits to the registry.

Figure 9. Regedit.

There were also some miscellaneous detections. One of these such as

“Using mouse activity”, was solved by changing Automa to boot the

snapshot for analysis in headless mode. There was also detection via

GetTickCount(), this returns the uptime of the PC. This works by

assuming that a virtual machine for analysis will likely be booted up and

the sample ran instantly where a more realistic case would be a user on a

PC for a certain amount of time before the PC is infected. This was

mitigated by having the machine run for a period of time until pafish no

longer detected it and then the snapshot for use in Automa was saved.

There were still some detections by pafish as can be seen in Figure 10

and 11. The disk size could not be easily changed due to the fact it was a

premade VM from Microsoft. Previously researched malware that

implemented similar checks did not check for as high as 60GB and were

closer to 10GB. The difference between the CPU timestamp counters

 22

(rdtsc) was also still used to successfully trace the VM. Based of research

this could not be easily solved and so was left for future work.

Figure 10. PAFish Results Post-Mitigation 1/2.

Figure 11. PAFish Results Post-Mitigation 2/2.

3.6 Testing

To measure the effectiveness of the developed tool, seven samples were

chosen that effectively show the type of samples a tool like this may

receive and to show how well the tool deals with them. The first

“helloworld.exe” was a simple hello world application written in .NET. The

second sample, “pafish.exe” had previously been used to harden the VM

but was a useful sample as whilst it uses similar functionality to malware

to detect VMs, it is not malicious in and of itself. The first malicious

sample is WannaCry.exe, the infamous ransomware previously

discussed. The second malicious sample is MassLogger a .NET

credential stealer, which implements simple anti-debugging techniques.

 23

The third, Upatre, a downloader tool responsible for delivering additional

trojans to the PC of the victim. It uses various anti-analysis techniques

such as a 12-minute delay in activity. Chthonic, the next sample is a

trojan aimed at banking with some obfuscation techniques. The final

sample is an unnamed sample that contains various anti-analysis

techniques such as checking for VBox, checking usernames, drive size.

These were all ran through the developed tool and the outputted report

saved. They were then also submitted to other available tools, Cuckoo

Sandbox and VirusTotal, to compare the effectiveness and the report

quality.

4 Results

4.1 Developed Tool

The samples were submitted to the developed tool which produced a

report for each. These were then examined and broken into more

readable tables. To find if the tools automated by the developed tool

successfully ran, the reports were examined for correct output. The

results of these can be found in Table 1. As can be seen, PE-Sieve failed

to run for the HelloWorld and MassLogger samples.

Sample MD5 Hash FLOSS CAPA PEFile Volatility PESieve INetSim

HelloWorld 5194ae60ca8803e130f87e5a829d2ac3 ✓ ✓ ✓ ✓ ✓

PaFish 9159edb64c4a21d8888d088bf2db23f3 ✓ ✓ ✓ ✓ ✓ ✓

WannaCry 84c82835a5d21bbcf75a61706d8ab549 ✓ ✓ ✓ ✓ ✓ ✓

MassLogger da06734f45a86b28e5f6e73cdde69ae3 ✓ ✓ ✓ ✓ ✓

Upatre a0e0a4d830b213ed381084312aef74a3 ✓ ✓ ✓ ✓ ✓ ✓

Chthonic aba6f9b372254cf34879ddc5283927c9 ✓ ✓ ✓ ✓ ✓ ✓

Unnamed

Malware

de1af0e97e94859d372be7fcf3a5daa5 ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Automa Tool Results

The reports were then analysed to find if they found “malicious” items i.e.

WannaCry’s network functionality detected by INetSim. This can be found

in Table 2. Looking at Table 2, whilst tools may have correctly run, it does

 24

not mean they successfully identified malicious actions. INetSim only

found malicious items with 2 samples and PE-Sieve identified one sample

with malicious items.

Sample FLOSS Capa PEFile Volatility PESieve INetSim VirusTotal

HelloWorld ✓ ✓ N/A ✓

PaFish ✓ ✓ ✓ ✓

WannaCry ✓ ✓ ✓ ✓ ✓

MassLogger ✓ ✓ N/A ✓ ✓

Upatre ✓ ✓ ✓ ✓

Chthonic ✓ ✓ ✓ ✓ ✓

Unnamed

Malware

✓ ✓ ✓ ✓ ✓

Table 2. Automa Suspicious Items

The HTML reports provide a better idea of what the tool produced. These

can be found in-Appendix A.

4.2 Cuckoo Sandbox

Cuckoo Sandbox was set up following the current documentation. The

documentation is lacking when it comes to hardening the guest VM. The

default settings within the VM were used without any hardening unless

stated otherwise by the documentation. Cuckoo Sandbox uses a Django

Web server to host the results of its analysis. However, it also produces

an HTML report that contains a summary of the findings. These HTML

reports can be found in Appendix B. The summary includes basic file info,

detected signatures and network traffic. The summary report of the

HelloWorld sample can be found below in Figure 12 as an example.

 25

Figure 12. HelloWorld Cuckoo Sandbox Summary.

4.3 VirusTotal

The samples were also submitted to VirusTotal. VirusTotal produces a

large page of information. The sample reports can be found by following

the VirusTotal link at the top of the developed tool’s reports or by

searching for the MD5 Hash of the sample (provided in Table 1) on the

VirusTotal site. The report typically consists of three pages, detection,

details and behaviour. The detection page contains a list of the anti-virus

tools that VirusTotal submits the sample to as well as the result of their

scan. The details page includes the specifics of the file such as the size

 26

and hashes etc. The behaviour section provides further details including

the registry keys that were set and deleted and the process and service

actions from when the sample was ran in a sandbox environment.

5 Discussion

The chapter will discuss the results and typically follow the order of

samples in the Tables above.

5.1 Samples

Sample 1, the Hello world application was a basic .NET application

generated to be used in bug testing of the tool. It had no functionality

other than printing “Hello World!”. Three tools however found some

suspicious items, PEFile, VirusTotal and Volatility’s RAMSCAN plugin.

PEfile found that the Byte 0x00 made up 62% of the file which would be

suspicious in a normal application. The VirusTotal result was simply that

of one anti-virus software, “MaxSecure” which detected it as a Trojan. It

could be that this was due to the same item PEFile found or just a simple

false positive. However, VirusTotal uses many anti-virus applications and

having only one detect a sample as malicious that is truly malicious would

be extremely unusual. The tool could therefore be improved by perhaps

implementing a threshold before adding to the report or notifying the user

that one detection is not enough to warrant it being a malicious activity.

The Volatility items appear to have been universal throughout testing and

could possibly be an issue with the plugin, in that it found many services

to have a suspicious RWX virtual address descriptor (VAD) as an error.

Alternatively, it could have been an issue with the VM and the RWX

allocations are used by Microsoft in the specific VM instance.

Interestingly, the Cuckoo Sandbox summary report also identified the

sample as allocating RWX memory whereas in Automa it is not included

in the Volatility. As can be seen in Table 1 PE-Sieve failed to run with this

sample and another, MassLogger. Based on bug testing during

development, it is likely this is due to the process ending and leaving the

memory before PE-Sieve has a chance to scan.

 27

Pafish.exe was the second sample tested. This was an ideal sample in

that it had a lot of functionality that to a typical anti-virus software would

look malicious. Pafish was used in Section 3.5 to test the VM for

detection using malware techniques. Likewise, to HelloWorld Volatility

RAMSCAN found several processes with suspicious RWX VAD.

However, after analysing the report it appears to include a correct

detection of pafish with CAPA also detecting that pafish allocating RWX

memory. CAPA also detects a lot of possibly malicious activity such as

“execute anti-VM instructions”. VirusTotal had 35 anti-virus tools that

detected pafish as malicious whilst some also correctly identified it as

“Paranoid Fish”. Using the wordlist, FLOSS identified several strings as

suspicious, including obvious items such as “MALWARE” and “VIRUS”

and other strings such as “Some anti(debugger/VM/sandbox) tricks” from

the word “anti” in the wordlist. Unlike the HelloWorld sample, INetSim

captured some network traffic, three DNS connections. After analysis of

these requests, they appear to all relate to Windows services and

therefore not related to pafish’s functionality. PE-Sieve also successfully

scanned the memory for suspicious items unlike the HelloWorld and

MassLogger samples but did not find anything of note. The Cuckoo

Sandbox report did not contain significant difference compared to Automa

in what it detected the sample performing.

The third sample, WannaCry, was the only sample in which PE-Sieve

identified a suspicious item. It found an implanted PE in memory, showing

the necessity for memory analysis. RAMSCAN found several RWX VADs

again including in wannacry.exe, however CAPA did not identify an

allocation of RWX VAD so more manual analysis would have to be

performed. CAPA did however identify many suspicious features such as

“persist via Windows service” which shows at least one of the ways in

which WannaCry attempts to persist on a victim’s PC. It also found

“reference AES constants” and “encrypt data using RC4 KSA”,

presumably used by the ransomware to encrypt the victim’s files. FLOSS

did not find much of relevance however it did find a string containing

“UPx”, the common packer. Due to the nature of encryption it is likely it

 28

could also just be part of an encryption key or randomly generated string

because CAPA or PEFile did not detect any packing. Unsurprisingly the

majority of tools on VirusTotal detected WannaCry with the API returning

61/75. The more surprising result is that some tools did not identify it.

With further investigation it appears the majority of tools that did not

detect the malware was due to the file type being unsupported or some

type of failure similar to a timeout. There were a couple tools that failed to

detect it such as Arcabit. The original WannaCry famously tried to make a

connection to a domain and if it exists the infection stops. Based on both

the Cuckoo and Automa report no network traffic was captured so

therefore it can be concluded this was a more recent sample with the kill

switch removed. WannaCry also utilised an SMB exploit to spread to

other PCs, however there was no detection of this by Cuckoo or Automa

which both use INetSim. Since INetSim does not currently support SMB

functionality, it could perhaps be detected if Automa was developed to

allow for a second VM to act as a victim PC to be infected from the

original VM and the traffic between the two captured.

Automa struggled with the next sample, MassLogger. There was a lack of

useful information detected by the static tools. As stated earlier, PE-Sieve

failed with this sample. CAPA detected only three known functionalities

that were not malicious. FLOSS did find many strings, but none contained

any items from the wordlist. However, VirusTotal API returned a lot of

detections with 55/76. Without VirusTotal the main suspicion from the

sample comes from INetSim. The traffic captured by INetSim contained

two odd requests. One to google.com and kbolias.gr both unlikely to be

Windows Services. The traffic captured by Cuckoo Sandbox only

contained one suspicious request, the google address. This is likely due

to the lack of hardening of the Cuckoo VM. MassLogger utilises a couple

anti-analysis techniques including a basic GetTimeCount() to get the

uptime of the PC.

The next sample, Upatre had more detected by Automa than the previous

Masslogger sample. FLOSS found many strings, but the only item found

 29

by the wordlist appears to be a false positive, “GetCommandLineA” from

the word “command” in the wordlist, which was added to try and detect

strings referencing C2 servers. It did however manage to identify some

decoded strings and stack strings as well as interesting strings that were

not caught by the wordlist such as “E:\Data\My Projects\Troy Source

Code\tcp1st\rifle\Release\rifle.pdb” which after some research appears to

relate to Rifdoor. CAPA also found many useful items such as “persist via

Run registry key”. There was not much discovered by the dynamic aspect

of Automa. Upatre’s nature as a downloader would imply network

functionality but INetSim found nothing. Some variations of Upatre

implement a 12-minute delay before starting any downloading of

malware. However, the Cuckoo Sandbox managed to identify

communication with the IP “158.69.155.155”. Therefore, Cuckoo Sandbox

must have captured this simply due to its longer timeout. Automa, does

not actually utilise a timeout feature but could greatly benefit from one,

instead it only allows time for the malware, PE-Sieve and the VirtualBox

memory dump to run.

The second last sample, Chthonic, also had a lack of results from static

tools. It had the same FLOSS false positive that Upatre had,

“GetCommandLineA”. It did also identify references to email addresses

and various websites including Symantec. PEFile found suspicious flags

set, IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE

which can indicate a packed executable. However, Automa due to the

way it was programmed only runs Unipacker when CAPA detects a

packed sample which it did not. Therefore, Automa could be improved by

including PEFile’s suspicions as a way to attempt unpacking. CAPA only

found three basic items, “copy file”, “link function at runtime” and “move

file” which could also suggest a packed file due to the lack of functionality

identified. RAMSCAN did identify chthonic as having a suspicious RWX

VAD but because CAPA did not identify it could not be verified by

Automa. However, using the Cuckoo Sandbox report it successfully

identified that it allocated RWX memory. The Cuckoo Sandbox also

detected a lot more features dynamically such as the sample allocating

 30

execute permission and writing to the memory of another process which

could suggest code injection.

Automa was a lot more successful at analysing the final sample - the

unnamed malicious sample. FLOSS found a lot of strings that contained

items from the wordlist including the obvious “MALWARE”, “VIRUS” and

“MALTEST”. It also identified “Keylogger timeout -%i ms” and “keylogger”

which clearly suggests the existence of keylogger functionality within the

sample. CAPA also found many suspicious functionalities, including

various anti-VM techniques. It found various references to anti-VM strings

targeting Qemu, VMWare and VirtualBox and checking if the process was

running under Wine (a Linux tool to run Windows software). The CAPA

results also verify the keylogger functionality with it finding “log

keystrokes” and “log keystrokes via polling”. The CAPA results also

contained “read clipboard data” and “parse credit card information”. The

FLOSS and CAPA highlights have been provided in Figure 13 below.

Figure 13. Unnamed Sample FLOSS & CAPA highlights.

 31

CAPA also found useful items but were not tagged as ATT&CK and so

were not placed in the highlights at the top of the report by Automa.

These included various anti-debugger and anti-VM functions like “check

for debugger via API” and checking for various sandbox items. There was

also more functionality that clearly identified the goal of the malware to

capture sensitive data like “capture screenshot” and “get keyboard

layout”. It too contained functions that were found in the previous samples

for example “persist via Run registry key” and “allocate RWX memory”.

The allocation of RWX memory similarly verified the Volatility RAMSCAN

result which identified the sample has having an RWX VAD. The CAPA

results also contained various references to network functionality such as

“resolve DNS”, “send HTTP request” and “send data”. These functions

can be confirmed looking at the INetSim report. The INetSim report for

this sample included the most data in the test samples with six DNS

connections, two of which appeared to be related to Microsoft services.

The other four look to be malicious with common malware domain names

such as “websitesecurity” and “securitydomains1”. The Cuckoo Sandbox

report was lacking in comparison to Automa’s whilst it identified common

things such as the sample being packed and the four suspicious

domains, it identified various anti-VM methods but due to the fact that the

Cuckoo VM was not hardened it could not provide much more data.

5.2 Tools

As expected, the tools each had their pros and cons. As previously

stated, Cuckoo Sandbox had a lack of documentation for the size of the

tool. The hardening of a VM can be quite a difficult task for an

inexperienced user or a truly new user to malware analysis might not

consider it a factor. The tool itself is highly configurable with many conf

files that can enable or disable tools and many options. These options

which can be extremely useful to adjust for specific samples can also be

a hindrance in the set-up, with a lot of the useful tools disabled by default.

A lot of the useful data and functionality found by Cuckoo Sandbox is in

the Web Server but as far as documentation covers there is not a way to

 32

export this neatly to a report. The only file report Cuckoo Sandbox

provides is a summary report that consists (with the configurations made)

of basic sample and analysis info, detected signatures and network

processes. This is not enough data for an analyst to use. Cuckoo

Sandbox is open-source which in the case of malware analysis tools can

also be a negative by being easier for a malware author to exploit.

VirusTotal is an extremely useful tool but it still has limitations due to its

nature. Due to the number of tools utilised, it can lead to samples being

detected which are false positives. This was proven in the testing with the

HelloWorld application. It can also have cases with samples like PAFish

because of the speed in which analysis is done there is no human

element deciding on whether the sample is malicious, leading to

assumptions of malware when similar functionality is used. The

VirusTotal report also does not provide much detailed information and an

analyst would have to carry out further investigation themselves. Unlike

Cuckoo Sandbox being free and open-source, VirusTotal can require a

paid enterprise account depending on the situation. It also requires an

online connection so can be unsuitable on occasion.

Automa whilst a proof-of-concept mitigates a lot of the issues with current

malware analysis. Volatility’s RAMSCAN as seen in testing had a lot of

false positives nonetheless still successfully identified a couple samples

with suspicious RWX VADs that were verified by CAPA. CAPA also failed

to detect and unpack one sample. The tool has a lot of benefits to a

beginner user in that it is a lot simpler than Cuckoo Sandbox for example.

There is not a large amount of documentation for the user to read before

getting the tool setup. All tools are enabled by default and do not have

many configuration settings that have to be adjusted. The tool’s output is

also relatively easy to understand with perhaps the exception of PEFile’s

dump. In comparison to Cuckoo Sandboxes summary tool output,

Automa had more of a focus on static and memory analysis whereas

Cuckoo Sandbox’s analysis of a sample’s features appear to come from

mainly dynamic analysis. This could be useful to implement into Automa

 33

to identify functionality that CAPA missed, perhaps due to packed

samples.

The virtual machine used is also hardened but importantly by simply

using different methods to Cuckoo Sandbox, it makes the fight harder for

malware authors. One of the most effective items in the fight against

malware is the idea of the “swiss cheese” defence. No tool is ever going

to be perfect but by implementing many different tools, malware must find

security gaps in each layer (tool) to successfully spread/infect or avoid

analysis. Automa also has similar limitations to other analysis tools,

dynamically the strongest anti-analysis method is arguably still time. If a

sample is run but does not perform any actions for a 24hr period it is

unlikely that the sample will be analysed in the environment for that long,

especially with the rate of new samples coming in.

6 Conclusion

Overall, the project was successful in meeting its aims. There were

several papers identified that state the need and benefits of automation of

malware analysis. The issues with current techniques and tools were also

researched and identified. A tool was developed that allowed for the

automation of various malware analysis tools. They covered static,

dynamic and memory analysis tools. The tool outputted a formatted

report of the results, as well as including a highlights section to attempt to

bring any suspicious items to the forefront of the analyst reading the

report.

The tool was also compared with other malware analysis automation

tools, Cuckoo Sandbox and VirusTotal. They were tested with seven

samples that had a range of functionality from basic hello world to

complex malware with anti-analysis techniques. The testing revealed the

effectiveness as well as the limitations of the proof-of-concept tool. It was

rather effective at producing a readable report with relevant data for a

malware analyst. It had more basic setup than Cuckoo Sandbox which

has various configuration files and a large number of settings. The report

 34

also provided a lot more data than Cuckoo Sandbox did which uses its

Web Server functionality to display a lot of the found results. It also

provided a lot more in-depth data when compared to VirusTotal which

typically displays only a binary malicious or not result from anti-virus

vendors.

The tools fought against various anti-analysis techniques. This includes

basic anti-analysis like unipacker to unpack samples. FLOSS was used to

improve upon the common usage of the “strings” command in analysis as

FLOSS attempts to fight against common techniques such as obfuscation

and encoding. The virtual machine used for dynamic analysis was

hardened using Paranoid Fish in an attempt to prevent any detection by

malware to detect its presence in a sandbox environment. This included

the editing or removal of certain registry keys, removal of specific drivers

and the MAC Address being changed. A lot of malware can avoid

detection using malicious memory techniques so tools such as Volatility

and PE-Sieve were implemented to detect any malware using memory.

CAPA was used to detect various functionality of a given sample which

could include anti-VM techniques as proven in testing. These had their

limitations which included some false positives and a lack of useful output

with certain samples. The fight against some anti-analysis techniques

would be at the discretion of the analyst, for example a malware that

waits to perform any malicious activity. It would be unrealistic to analyse

the sample for the time required if it is a lot larger than that used by some

samples such as Chthonic which waits 12 minutes.

Simply by being another tool that malware authors have to prevent

detection by it can make the job a lot more challenging for them. Tools

like Cuckoo use by default, standardised methods. These include items

such as directory names or usernames. Automa being in its infancy and

unknown state provide another variation. For example, Cuckoo Sandbox

uses pipes as one of the ways to communicate with the sandbox

environment and malware can attempt to detect the presence of specific

 35

pipes. Automa on the other hand currently only utilises network sockets,

whether that is sending the sample or receiving analysis data.

Overall, automation is a necessary area of malware analysis with the rate

of new samples. With the limited number of tools available malware can

try and defend against them so more tools are becoming more important.

The need for a human element can also be seen with VirusTotal’s false

positives in testing. Automa’s choice of tools covers a wide range of

analysis areas. Automa also successfully improves upon aspects of tools

like Cuckoo Sandbox with a more detailed report. It does have limitations

as a proof-of-concept when compared to fully developed tools, but these

could easily be mitigated with development time.

6.1 Future Work

Many mitigations were identified during development and testing that

could be developed upon to improve the tool. There is possibly issues yet

to be identified so more testing could always be done, especially on

newer samples with more advanced features. Many of the issues are

relatively simple including improving the formatting of the report. Currently

the report is data driven and can sometimes be too long depending on

the output tools. The output of tools like FLOSS could be added to a

collapsible list depending on the length.

The usability could also be improved, currently the documentation is

relatively short whilst this is useful a new user may run into an issue due

to lack of experience. The tool could be improved by adding some

configuration but unlike Cuckoo Sandbox the tools would be better

enabled by default however settings such as timeout length could be

extremely beneficial. On that note, the tool could benefit from a set

timeout for analysis purposes. Instead of relying on the length it takes to

run the sample and take a memory dump which would allow for

consistency. Similarly, a lot of the code base uses poor methods i.e it

powers on the virtual machine and waits 5 seconds for boot but if a user

was on a slower PC the virtual machine might not be ready to receive the

 36

sample after 5 seconds. Instead, it would be beneficial to wait for

communication from the analysis VM to confirm it is ready.

A lot of features could be added that are inspired by Cuckoo Sandbox as

it is a well-developed and feature full tool. The Web Server functionality

could be extremely useful to setup a separate dedicated analysis

machine that could receive samples through the network. One other

feature of Cuckoo Sandbox which was useful which was stated

previously, was the dynamic approach to finding a samples functionality.

Whilst CAPA is extremely useful and effective it can sometimes fail, as

was seen in testing when dealing with packed samples and by also using

dynamic approaches it could verify any malicious functionality found. The

tools already in Automa could also be improved upon. One main way

would be dealing with the RAMSCAN issue that testing found. This could

be fixed by dealing with the RWX memory within the VM, implementing a

filter on these specific processes or it could also just be an issue with the

plugin which could be fixed or replaced.

There is always going to be improvements in anti-analysis techniques

that Automa will have to deal with. Malware has already been found that

waits on a user’s mouse movement before beginning malicious activity.

Since Automa is programmed to boot the virtual machine in headless

mode those samples would avoid dynamic analysis. There were also

some methods of detection found by Paranoid Fish such as the size of

disk being less than 60GB. These could be identified and mitigated as

well.

 37

List of References

Baezner, M. and Robin, P. (2017) ‘Stuxnet’ ETH Zurich doi: 10.3929/ethz-

b-000200661.

Baezner, M. (2019) ‘Iranian Cyber-activities in the Context of Regional

Rivalries and International Tensions’. ETH Zurich. doi: 10.3929/ethz-b-

000344841

Checkpoint Research (2021) After Lightning Comes Thunder. Available

at: https://research.checkpoint.com/2021/after-lightning-comes-thunder/

(Accessed: 19 April 2021).

Chen, T. and Abu-Nimeh, S. (2011) ‘Lessons from Stuxnet’ Computer,

vol. 44, no. 4, pp. 91-93 doi: 10.1109/MC.2011.115.

DRAKVUF (no date). DRAKVUF. Available at: https://drakvuf.com/

(Accessed: 22 April 2021).

FireEye (2016). Automatically Extracting Obfuscated Strings From

Malware. Available at: https://www.fireeye.com/blog/threat-

research/2016/06/automatically-extracting-obfuscated-strings.html

(Accessed: 20 April 2021).

Ferrand, O. (2015). ‘How to detect the Cuckoo Sandbox and to

Strengthen it?’, J Comput Virol Hack Tech 11, pp. 51–58. doi:

10.1007/s11416-014-0224-9.

Gadhiya, S., Bhavsar, K. (2013) ‘Techniques for malware analysis’,

International Journal of Advanced Research in Computer Science and

Software Engineering, 3(4), pp.2277-128.

Github (2018). anticuckoo, David-Reguera-Garcia-Dreg. Available at:

https://github.com/ mentebinaria/retoolkit (Accessed: 21 April 2021).

https://research.checkpoint.com/2021/after-lightning-comes-thunder/
https://drakvuf.com/
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://github.com/netspooky/inhale

 38

Github (2019) pafish, a0rtega. Available at:

https://github.com/a0rtega/pafish (Accessed: 26 April 2021).

Github (2020a). Inhale, netspooky. Available at:

https://github.com/netspooky/inhale (Accessed: 20 April 2021).

Github (2020b) volatility, volatilityfoundation. Available at:

https://github.com/volatilityfoundation/volatility (Accessed: 25 April 2021).

Github (2021a). retoolkit, mentebinaria. Available at: https://github.com/

mentebinaria/retoolkit (Accessed: 21 April 2021).

Github (2021b). capa, fireye. Available at: https://github.com/fireeye/capa

(Accessed: 21 April 2021).

Github (2021c). unipacker, unipacker. Available at:

https://github.com/unipacker/unipacker (Accessed: 21 April 2021).

Github (2021d). pefile, erocarrera. Available at:

https://github.com/erocarrera/pefile (Accessed: 22 April 2021).

Github (2021e). vt-py, VirusTotal. Available at:

https://github.com/VirusTotal/vt-py (Accessed: 22 April 2021).

Github (2021f). pe-sieve, hasherezade. Available at:

https://github.com/hasherezade/pe-sieve (Accessed: 24 April 2021).

Github (2021g) volatility-plugins, TazWake. Available at:

https://github.com/TazWake/volatility-plugins (Accessed: 25 April 2021).

INetSim (2020). INetSim. Available at: https://www.inetsim.org/

(Accessed: 24 April 2021).

https://github.com/a0rtega/pafish
https://github.com/netspooky/inhale
https://github.com/volatilityfoundation/volatility
https://github.com/netspooky/inhale
https://github.com/netspooky/inhale
https://github.com/fireeye/capa
https://github.com/unipacker/unipacker
https://github.com/erocarrera/pefile
https://github.com/VirusTotal/vt-py
https://github.com/hasherezade/pe-sieve
https://github.com/TazWake/volatility-plugins
https://www.inetsim.org/

 39

InfoTransec (2019) The Impacts of NotPetya Ransomware: What You

Need to Know. Available: https://infotransec.com/news/the-impacts-of-

notpetya-ransomware-what-you-need-to-know/ (Accessed: 29 April

2021).

Ligh, M. et al. (2014) The Art of Memory Forensics: Detecting Malware

and Threats in Windows, Linux and Mac Memory. Germany: Wiley.

Lindorfer M., Kolbitsch C. and Comparetti P. (2011) ‘Detecting

Environment-Sensitive Malware’, Recent Advances in Intrusion Detection.

RAID 2011. vol 6961. pp. 338-358 doi: 10.1007/978-3-642-23644-0_18.

McAfee (2020). COVID-19 – Malware Makes Hay During a Pandemic.

Available at: https://www.mcafee.com/blogs/other-blogs/mcafee-

labs/covid-19-malware-makes-hay-during-a-pandemic/ (Accessed: 2 May

2021).

Microsoft (2021) Virtual Machines. Available at:

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

(Accessed: 23 April 2021).

PurpleSec (2021) 2021 Cyber Security Statistics. Available at:

https://purplesec.us/resources/cyber-security-statistics/ (Accessed: 20

April 2021).

Selçuk, A. Orhan, F. and Batur, B. (2018) ‘Intractable Problems in

Malware Analysis and Practical Solutions’. Journal of Internet Technology

and Secured Transactions, 6(2), pp. 588-595. doi:

10.20533/jitst.2046.3723.2018.0072.

Stubbs, J. (2020) ‘Exclusive: Suspected North Korean hackers targeted

COVID vaccine maker AstraZeneca’, Reuters, 27 November. Available

at: https://www.reuters.com/article/us-healthcare-coronavirus-

astrazeneca-no-idUSKBN2871A2 (Accessed: 30 April 2021)

https://infotransec.com/news/the-impacts-of-notpetya-ransomware-what-you-need-to-know/
https://infotransec.com/news/the-impacts-of-notpetya-ransomware-what-you-need-to-know/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/covid-19-malware-makes-hay-during-a-pandemic/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/covid-19-malware-makes-hay-during-a-pandemic/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://purplesec.us/resources/cyber-security-statistics/
https://www.reuters.com/article/us-healthcare-coronavirus-astrazeneca-no-idUSKBN2871A2
https://www.reuters.com/article/us-healthcare-coronavirus-astrazeneca-no-idUSKBN2871A2

 40

Uppal, D., Mehra, V and Verma, V. (2014) ‘Basic survey on Malware

Analysis, Tools and Techniques’, International Journal on Computational

Sciences & Applications, Vol 4. pp. 103-112. doi:10.5121/ijcsa.2014.4110

Vasilescu, M., Gheorghe, L. and Tapus, N. (2014) ‘Practical malware

analysis based on sandboxing’, 2014 RoEduNet Conference 13th Edition:

Networking in Education and Research Join Event RENAM 8th

Conference, pp. 1-6, doi: 10.1109/RoEduNet-RENAM.2014.6955304.

Wang, L. et al. (2020). ‘Beyond the virus: A first look at coronavirus-

themed mobile malware’.arXiv e-prints.

Willems, C., Holz, T. and Freiling, F. (2007) ‘Toward Automated Dynamic

Malware Analysis Using CWSandbox’, IEEE Security & Privacy, Vol. 5,

no. 2, pp. 32-39. doi: 10.1109/MSP.2007.45.

Wired (2017). How an Accidental ‘Kill Switch’ slowed Friday’s Massive

Ransomware Attack. Available at:

https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-

massive-ransomware-attack/ (Accessed: 14 April 2021).

Yin, H., Song, D. (2012). Automatic Malware Analysis. New York:

Springer.

Yoshioka, K., Hosobuchi, Y., Orii, T., and Matsumoto, T. (2010)

‘Vulnerability in Public Malware Sandbox Analysis Systems’ 10th

IEEE/IPSJ International Symposium on Applications and the Internet, pp.

265-268, doi: 10.1109/SAINT.2010.16.

https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/
https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/

 41

Appendices

Appendix A

Due to the length of the reports they could not easily be included in their

entirety. Instead any items mentioned in section 4 and 5 have been

included and the full Automa report can be found in the tool’s github

repository under the reports directory which can be found:

https://github.com/Rankin2000/automa

Hello World

Figure 14. Automa HelloWorld Highlights.

https://github.com/Rankin2000/automa

 42

PAFish

Figure 15. Automa PAFish Highlights.

 43

Figure 16. PAFish INetSim.

 44

WannaCry

Figure 17. Automa WannaCry Highlights.

 45

Mass Logger

Figure 18. Automa MassLogger Highlights.

 46

Figure 19. MassLogger INetSim

 47

Upatre

Figure 20. Automa Upatre Highlights.

 48

Figure 21. Upatre Rifle.pdb String.

 49

Chthonic

Figure 22. Automa Chthonic Highlights.

 50

Unnamed Malware

Figure 23. Automa Unnamed Highlights 1/2.

 51

Figure 24. Automa Unnamed Malware 2/2.

Figure 25. CAPA debugger.

Figure 26. CAPA Network.

 52

Figure 27. Unnamed Malware INetSim.

 53

Appendix B

Hello World

Figure 28. HelloWorld Cuckoo Sandbox.

 54

PAFish

Figure 29. PAFish Cuckoo Sandbox.

 55

WannaCry

Figure 30. WannaCry Cuckoo Sandbox.

 56

Mass Logger

Figure 31. MassLogger Cuckoo Sandbox.

 57

Upatre

Figure 32. Upatre Cuckoo Sandbox.

 58

Chthonic

Figure 33. Chthonic Cuckoo Sandbox.

 59

Unnamed Malware

Figure 34. Unnamed Malware Cuckoo Sandbox.

