

Raspberry Pi OpenMPI
Password Cracking Cluster

Neirin McDonald

Jake Mills

Stuart Rankin

Ewan Scott

CMP311: Professional

Project Development & Delivery

Ethical Hacking

2019/20

Abstract

This white paper has been created to present the findings and method that team Space
Hopper used to create a Raspberry Pi cluster utilizing the program John The Ripper to crack
passwords. Dr Ethan Bayne, a staff member at Abertay University, was the client for this
project. The project brief was to “create a Raspberry Pi network of various models which
utilizes OpenMPI and John The Ripper to create a heterogenous password cracking cluster,
then measure its performance against a Hacklab workstation and/or GPU” which is what we
aimed to achieve on this project. We also aimed to create various scripts for the cluster.

This aim was met by splitting the project into 4 distinct sections. First section was the
construction of the cluster, this was done by flashing all Raspberry Pis we were given with
Raspbian Buster Lite1 and then giving them all different static IPs and hostnames. Using an
8-port switch a small network was created for the cluster, the Pis were powered by a USB
power hub. Then an 128GB USB drive was connected to the master node so that a Network
File System (NFS) share was set up on the cluster, so that all nodes could access the same
files.With all the nodes properly configured from here the cluster was controlled by a desktop
computer through SSH. The programs SLURM and OpenMPI were then installed in this part
of the project to allow the master node to properly control the cluster, this completed the
construction of the project.

The next section involved installation of two important packages, Python and John The
Ripper. Python was chosen as the scripting language due to the fact most students studying
Ethical hacking at Abertay understand and know how to program in it. Installation was done
by using “wget”, “tar” and the standard Linux “make, make install” to install John on the
master node, Python was the same except “./configure” was used to install Python onto the
NFS share so that all nodes could access its libraries without them having to install Python
to the node's main storage.

The last 2 stages consisted of creating a benchmark script to measure the clusters
effectiveness and then comparing these results to a hacklab computer. This had to be
changed however due to COVID-19, as the University was closed and we couldn’t access
the workstations. Because of this Stuart Rankin’s computer was used as a comparative
benchmark. With the benchmarks done, conclusions could be drawn about the cluster.

The desktop was found to be faster than the cluster when cracking passwords, however this
was no surprise as Stuart Rankin’s computer is a modern desktop PC with a high clock and
core CPU. But while the cluster isn't the fastest other positives were found:

• The cluster would work as a good showcase for Open days to potential new
students.

• It could work around the clock to crack passwords while hacklab workstations need
to be used for other uses.

• With SLURM the cluster is now very flexible and could be used to perform multiple
different jobs at the same time.

• It could be repurposed relatively easily in the future.
• It used various pieces of old and unused pieces of hardware.

So, while it was found to not be the fastest password cracker in the future it could serve
multiple other functions to the staff and students of Abertay University.

Contents
Introduction .. 4

Background ... 4

Aim .. 5

Procedure .. 7

Overview of Procedure ... 7

Results ... 10

Raspberry Pi cluster benchmark results ... 10

Discussion.. 12

General Discussion .. 12

Conclusions ... 13

Future Work .. 14

Call to action ... 15

References .. 16

Appendices .. 17

Appendix A - E-mails ... 17

Appendix B – Scripts ... 17

demo.py .. 17

johnDemoWordlist.sh ... 19

johnDemo.sh ... 19

benchmark.py ... 19

wordlistBenchmark.sh .. 21

johnTest.sh .. 21

Appendix C - Results ... 21

johnTest.sh Result ... 21

Comparison john --test Result .. 22

Appendix D - Burndown Chart .. 23

Appendix E Gantt Chart .. 24

Appendix F - Deliverables & requirements ... 25

Appendix G – Minutes... 27

Appendix I - Manual .. 36

Introduction

Background

The limits of what a machine can do are continuously being pushed further and further,

making computers faster and smaller. According to Moore’s Law2, “processor speeds, or

overall processing power for computers will double about every 18 months” (University of

Missouri-St. Louis, no date). Unfortunately, our progress comes with a downside. Due to

creating new and faster computers, we discard hundreds of thousands of pounds worth of

older computers every year, many of which are deposited in landfills increasing the amount

of pollution which is bringing on disasters such as climate change. The average person in

the UK creates 20-25kg of e-waste every year, and “43 million tons of electronic waste was

generated in 2016” (Knapton, 2017)3. Not only is there such a large amount of e-waste

produced, it is growing faster than any other type of refuse. These old computers simply

become outdated and cannot compete with new better models, however they are still

functionable. By creating a cluster of these older machines, you can combine their power

into something that can still compete with new machines, therefore negating the need to

throw them away.

The date of the first cluster is unknown, but it was likely created either in the late 1950s or in

the 1960s by consumers who needed more storage space as their home computers were

not able to store all their files. It was later in 1967 when Gene Amdahl published a paper on

parallel processing, where he explains that performing work in parallel will reduce the time

taken to perform said work. In this paper he defined Amdahl’s Law, which describes how

much faster a task can be run depending on the number of processors used and what

percentage of the task will benefit from being run in parallel.

The development of early clusters is related to the development of early networks, since the

use of these networks was to link different hardware together to link their resources, which

effectively is creating a cluster. The earliest commodity-network based computer cluster that

was developed is the ARPANET, which was created by linking four separate computers

together. This eventually developed into the modern-day internet. The internet itself can be

described as a gigantic cluster.

A single Raspberry Pi can in no way compete with a workstation PC, however there is

strength in numbers. By creating an MPI cluster of Raspberry Pis, they will be able to have

the power to compete with any machine. The size of the cluster can easily be modified to

add more Raspberry Pis to increase the power of the cluster, the cluster will also have the

ability to easily remove Raspberry Pis if needed. This cluster will utilise the password

cracking software “John the Ripper” to be able to crack passwords at the same speed, or

even faster, than a hacklab workstation PC.

An issue with the cluster is the use of space. Utilising multiple pieces of hardware will take

up more space, which is unavoidable. For our cluster we will attempt to set up appropriate

housing for the nodes in the cluster to maximise space efficiency and to use effective cable

management.

An alternative solution that is currently being implemented is recycling plants. The problem

with this approach is that it is not feasible to recycle everything and only 15.5% of e-waste is

recycled properly globally (Vaute, 2018)4. There is far too much technology for it all to be

recycled. Apple made a robot that can dismantle an entire iPhone in a few seconds, but

even that still is not capable of keeping up with the humongous workload that Apple provides

for it. See figure 1 which shows how much e waste has been created from 2000 to 2011.

Figure 1
showing the amount of e-waste trashed vs the amount of e-waste

produced.

Aim

The aim of this project is to create a working cluster of Raspberry Pis that can utilise John

the Ripper to crack lists of password hashes in multiple different hash types. The cluster will

have scalability, with inbuilt scripts that will allow the user to easily add/remove raspberry pis

to and from the cluster. We aim to give our cluster a friendly, easy to use interface so that

the cluster can be used at demonstrations to people with technical knowledge. We will

create a user tutorial that will be built into the cluster to demonstrate the capabilities of the

cluster and to show the user how they can utilise the cluster’s functionalities. A user manual

will also be created to give detailed instructions on how to use the cluster and how to resolve

common problems that may be found while using the cluster.

There were several objectives for the project which are:

• To create a Raspberry Pi cluster

• To install John The Ripper and Python to the cluster

• Write various Python scripts which utilize John The Ripper to crack passwords and

perform other functions.

• Benchmark the final cluster product against a hacklab computer.

All these objects had been researched in CMP308 (Professional Project Planning and

Prototyping) thoroughly, this allowed the team to create a Gantt chart (see appendix E Gantt

chart) which played into the team’s strengths. The tasks are split in a way which gives

everyone similar workloads but also plays into what the teammate is good at. The research

also gave each team member a look at what it takes to create a cluster in terms of putting

one together, installing and running the necessary programs and how to maintain a cluster.

This has given the team a lot of confidence that they know what to do when they need to

complete a task on the Gantt chart.

Everyone in the project also has good technical knowledge, this is known as every team

member is in 3rd year on Abertay’s Ethical Hacking course. Technical knowledge of subjects

such as networking, Linux OS’s, John The Ripper and Python are needed to get to this point

in the course, all of these subjects are used in this project. Because of these reasons the

team knows that the projects aims/objectives can be met.

Procedure

Overview of Procedure

The next section explains how the team created and built the cluster for the project. A full

manual explaining how to fully build and create this cluster was made during this project in

case anyone wanted to work on this cluster in the future. This can be found in appendix I –

manual.

Building the Cluster

Jake Mills was responsible for physically building the cluster with the equipment that was
given to us. The first step taken was to flash the Pis with Raspbian Buster Lite. The image
was written to the SD cards using the program “Etcher”.

Once the Raspberry Pis were all successfully flashed, it was time to create the network the
cluster would be using. Firstly, SSH was enabled manually by using the command “raspi-
config” on every Raspberry Pi. Each Pi was then set up individually one after another for the
sake of convenience in recording each node’s IP address. Each Pis IP address was
assigned manually by editing their configuration files and were recorded.

After assigning static IP addresses to each node it was time for basic configuration of each
Pi, starting with the hostname. This was accomplished by using the “hostname” command
and editing the “hostname” and “hosts” files of each Pi. The times of each node had to be
synchronized to allow them to function together as a cluster so this was carried out by
installing the “ntpdate” package on each Pi. A reboot was performed on each node
afterwards.

Figure 2

All hardware pieces use in the cluster.

8-port switch

128GB USB

flash drive

Raspberry Pi

flash cards

5 port USB

power hub

Ethernet

cables

USB micro B cables

Raspberry Pi 1s

Raspberry Pi 2

3. Shared Storage

In order for the Raspberry Pis to function together as a cluster they need to be able to
access shared resources, allowing a file to be accessed by any node in the cluster. One of
the nodes in the cluster was designated as the master node and a USB flash drive was
connected to this node and mounted on it to be used for Network File System (NFS).

The flash drive was formatted to use the ext4 filesystem and a mount directory was created
on the master, this was then mounted on and automatic mounting was enabled. The
permissions set on the mounted drive were not needed to be strict since the cluster is well
supervised.

Once the NFS was mounted on the master node, it was then needed to be exported to the
rest of the cluster and was mounted on the compute nodes by installing the NFS client,
creating a mount folder and setting up automatic mounting.

4. Installing and Configuring SLURM

To help run tasks on the cluster, SLURM, a scheduling program was installed onto the
cluster. The SLURM control packages were installed onto the master node. The SLURM
configuration file is edited so that the configuration file contains the hostname and the IP
address of the master node. There are multiple methods for allocating resources in SLURM,
however we wish to use the consumable resources method so that jobs are given out to
nodes based on their CPU usage. To select this method, the “SelectType” field in the
configuration file is edited. The information about all of the compute nodes are then inserted
into the configuration file so that SLURM can allocate tasks to them. A partition needs to be
created for the nodes. The example partition is deleted and a new one is inserted, and the
nodes are added.

After editing the configuration file, SLURM needs to be configured to allow jobs to access
resources. This is accomplished by creating a file called “cgroup.conf”, which contains all of
the resources. Then a whitelist file is created to allow devices in the cluster to access
required resources. The configuration file, cgroup file and whitelist files are copied to the
NFS to allow compute nodes to be controlled by SLURM, in addition to the Munge key file.

SLURM control services are enabled with the systemctl command and the cluster is
rebooted.

Now that SLURM is set up on the master node, it needs to be configured on the compute
nodes. The SLURM client is installed on the compute node and the hosts file is edited to
include the hostnames and IP addresses of all of the other nodes in the cluster. The
configuration file, cgroup file and munge key are copied from the NFS onto the node and
Munge is enabled and ran to test that it will work on the node. By using Munge to generate a
key on the master node and have the compute node attempt to decrypt the key. If the key is
successfully decrypted, then Munge is set up correctly on the node. If not, then the Munge
key may not be consistent across each node in the cluster. This is repeated for each
compute node in the cluster.

Next, SLURM was enabled and was run on the cluster. By using the “sinfo” command on the
master node, all of the nodes that SLURM can detect are shown. SLURM can be tested by
running the hostname command on the cluster. If SLURM is correctly set up, then the
hostnames of each node apart from the master will be displayed.

5. Installing OpenMPI

OpenMPI, an open-source Message Passing Interface, will enable the nodes to connect with
each other while running tasks, meaning that they can crack passwords together. The “srun”
command is used on the master node to install OpenMPI onto each node. This was installed
by running an “srun apt install” command from the master node to distribute the command to
all nodes, this way the command only had to be entered once but the whole cluster would
download OpenMPI.

6. Installing Python

The programming language chosen for the cluster was python since it is very basic and is
very well recognised. It is also used by most students studying Ethical Hacking at Abertay
University. As all nodes need to access the library files it would be inefficient to install Python
onto every Pi so instead it was installed onto the NFS which every node can access. To do
this comand was used “wget https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz” to
get the Python package. It was then unzipped using the command “tar xvzf Python-
3.7.3.tgz”, this was all done in the file /clusterfs/python so it was located on the NFS. Then
the directory /clusterfs/usr was made to store the install of Python in. Then using the
command “./configure \ --enable-optimizations \ --prefix=/clusterfs/usr \ --with-
ensurepip=install” was used to configure the Python to install in a custom location and to
also install the pip program. Finally using “make” and then “make install” installs Python onto
the NFS.

Python was installed after this however errors were being returned from the nodes, after
some investigation it was found that some dependencies were missing, the command “srun -
-nodes=3 sudo apt install libatlas-base-dev” retrieved the missing files. The command Using
the command “srun --nodes=3 /clusterfs/usr/bin/python3 -c "print('Hello')” ” confirmed that
Python worked on the cluster.

7. Installing John The Ripper

Since John The Ripper already has MPI support built into the software itself it only needs to
be built on the master node, when jobs are submitted John will handle everything else when
it comes to passing the specific jobs to the nodes. This was done by using “wget ” to retrieve
the source package and downloading it onto the NFS. From here the package was unzipped
using “tar”, then the package was configured and made for install onto the master node
using “make”, “./configure” and “make install” to install the program onto the master node.

8. Writing the Demo Script

Once the cluster was set up and all of the programs successfully installed, the writing of the
demo scripts could begin. Three files were created on the cluster, demo.py, johnDemo.sh
and johnDemoWordlist.sh. The bash files were two SLURM batch scripts that would use
John the Ripper either to brute-force or use a wordlist to crack the default Raspberry Pi
password “raspberry”. The python file when run would provide the user the option between
brute-force or a wordlist crack and run the relevant SLURM script. Once the job was finished
on the cluster the script would then display the relevant SLURM output file.

9. Comparing the Cluster to a Home PC

To benchmark the cluster another python script and SLURM batch file were created. The
script timed how long it took the cluster to crack “raspberry” 10 times and displayed the best,
median and mean times. The times were noted and the SLURM file edited to change the
number of cores and the script was run again. This was repeated for 1 core through to 7
cores. Once the testing of the cluster was complete, a variation on the Python script was run
on a home PC and the time was recorded to compare our cluster’s performance.

https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz

Results

Raspberry Pi cluster benchmark results

The final product contains 4 Slave Pis totalling 7 CPU cores and another Pi 1 for the master.
On the NFS there are also files to aid in both demonstration and benchmarking. These files
are also shown under their file name in Appendix B. The file demo.py and the related
johnDemo.sh and johnDemoWordlist.sh provide a demonstration of the working cluster with
John the Ripper cracking the default Raspberry Pi password of “raspberry”. On the NFS
there is the wordlist rockyou.txt, however due to the size of it, in the demonstration and
benchmark scripts a variation on the default John the Ripper wordlist is used. Demo.py gives
the user the option between cracking with a wordlist or brute-force however brute-force is not
recommended until the cluster is massively increased in size or the johnDemo.sh file is
edited to give John the Ripper a charset detailing that the password is lowercase.

The file benchmark.py and the bash script wordlistBenchmark.sh allows the user to easily
benchmark the nodes by manually changing the bash script’s number of tasks (CPU cores)
and running the python script. This was done and the number of nodes were incremented to
gain an insight into how significantly more Pis would benefit the cluster.

The client originally asked that the cluster be compared to one of the Hacklab workstations,
however due to COVID-19 this could not be done until a much later date. Instead, one of the
team member’s (Stuart Rankin) home PC was used instead. The PC specifications are the
following:

• CPU – AMD Ryzen 2700x
• RAM – Corsair Vengeance 16GB (2x8GB) DDR4 3200MHz
• Motherboard – Gigabyte X470 AORUS Ultra Gaming
• GPU – GeForce GTX 1080 WINDFORCE OC

The following graphs illustrate the results of the benchmark script on the cluster and PC
respectively.

Figure 3

Benchmark.py results on cluster

Figure 4

Benchmark results from comparison PC

 1 Node 2 Nodes 3 Nodes 4

Nodes
5
Nodes

6
Nodes

7
Nodes

Ryzen
7
2700x

Best 279.98 144.1945 98.9365 77.1512 63.9045 52.9528 46.5489 1.1309
Mean 284.8681 147.6378 102.1322 80.636 76.5941 60.355 52.9719 1.2709
Median 284.4606 146.9869 101.7228 80.7424 71.1106 60.7231 53.9173 1.242

Figure 5
Table of full results

Figure 3 provides a clear representation of how the cluster can utilise hardware that on its
own fails to crack a password in a reasonable time as well as showing how effective adding
more nodes can be. Looking at all the Figures it shows that the cluster was easily beaten by
the comparison PC however it is important to keep in mind that the AMD Ryzen 2700x is a
current mid-range CPU, containing 8 cores and 16 threads. As well as this, the 2700x also
has a Base Clock of 3.7GHz which is more than double the clock speed of the latest
Raspberry Pi, the Raspberry Pi 4 Model B which has a quad core with a clock speed of
1.5GHz. The comparison’s PC current specifications could cost upwards of £1000 compared
to the Raspberry Pi 4’s current price of around £50.

The common way to benchmark John the Ripper is using the in-built feature which is run
using the flag “--test”. This was done on the cluster and on the comparison PC and both
results can be found in Appendix C under “johnTest.sh Result” and “Comparison john -- test
Result”. Due to memory constraints on the cluster johnTest.sh would crash, to prevent this
the swap file on each node was increased to 2GB which likely caused notable performance
loss.

Whilst the results are not as good as expected, it still shows that with more nodes being
added it could crack passwords much faster. As well as this, the cluster still achieves other
goals which will be reviewed in the discussion section.

Discussion

General Discussion

As can be seen in the results, the cluster was able to successfully crack the list of given
hashes using John the Ripper. By utilising more slave cores, the time taken to complete the
password cracking was reduced. The reduction in time is more substantial when increasing
the number of cores used from 1 to 2 and the reduction in time is less and less as more
cores are added. This shows that by adding additional Raspberry Pis to the cluster the time
could be reduced further, enabling the cluster to approach the power of a workstation PC,
allowing outdated hardware to be repurposed instead of being thrown away. We were only
able to write a demo script for the cluster and not a tutorial script or a scalability script, due to
unforeseen, uncontrollable factors that arose during the project development stage.

A user manual was created which contains clear instructions for a user to set up their own
MPI cluster and steps on how to manage the cluster if problems should arise. The manual
explains steps such as assigning static IP addresses and hostnames to each node, setting
up an NFS and installing the necessary programs such as SLURM and OpenMPI.

To add or remove nodes to or from the cluster, the user will need to add or remove them
manually, the conditions brought on by the COVID-19 pandemic severely hampered our
progress since we were no longer able to all have physical access to the cluster, which was
needed to write scripts and perform node configuration.

The cluster itself was set up properly and can function very well, performing the task that we
instructed it to complete. The NFS is set up to allow the nodes to access shared files and
has room to be improved upon in the future if conditions allow. The ROI is great since the
cluster does not cost anything to produce. It is made of old hardware that is ready to be
thrown away. The cluster could be used to attract new students at open days, causing
financial benefits for the client.

The cluster presently has a text-based interface which functions well enough now since the
cluster only has a few scripts to run. With more scripts added and possibly more functions
added to the cluster, the user interface should be updated so that users who are new to
Raspberry Pis and clusters can easily use the cluster.

Conclusions

This project has been successful in creating a good finished product, even with the team
having to counteract the restrictions that COVID-19 placed onto the project. There are
several benefits the project has created for the client which will prove to be useful in the
future. The first one is the fact that the client now has a fully functioning Raspberry Pi cluster
using the OpenMPI software which was specified by the client in the project proposal.

Because of this cluster the client now has several other benefits which they can utilize. Due
to the way the cluster has been set up it allows for easy expandability for the future, allowing
the client to add as many Raspberry Pis as they’d like to the cluster. With the addition of
more nodes comes more compute power for the cluster, meaning John The Ripper will most
likely crack passwords faster. The client has also expressed that they have a lot of unused
Raspberry Pis which we saw first-hand during this project, by adding these to the cluster
unused Pis would be put to good use in the cluster.

This cluster is also very flexible because of the way it utilizes a Network File System (NFS)
between all nodes. This was used in the project so that all nodes could access the same
files at the same time, primarily it is used by the current cluster to store all the Python library
files and script batch job files. Knowing this, and the fact the NFS has currently over 100GB
of free space leaves a substantial amount of room for more programs which could be used
by the cluster. Meaning that in the future if it needs to be repurposed it could easily be
changed to serve an alternative function.

If a password file is particularly difficult to crack students will often leave a Hacklab
workstation running John The Ripper to crack the file while they leave for sometimes several
hours, this takes up a workstation which another student could use. Because of this another
benefit is the fact that the cluster is completely dedicated to cracking passwords. Unlike the
other Hacklab workstations which need to be used for other activities this cluster can be
given a file to crack and left alone until it is finished, making a workstation available to be
used by another student.

While the team researched the project, we found that there wasn’t any documentation about
how to create a cluster with the same configuration that's been created in this project.
Because of that a manual has been created (see Appendix I) for future reference which has
3 parts. First section explains how to create the Cluster, this was made in case the Cluster
needed to be remade. The second section shows a user how to create batch jobs and
scripts for the cluster to run. Finally, the last section just shows some useful commands
users will need to effectively use the cluster. This should prove very useful to the client in the
future if they want to work with this cluster further.

The client also expressed that they thought the cluster would be a good system to show to
potential students on open days. Since the cluster has been completed to a good standard
and has a demo script showcasing the cluster’s capabilities, the team does believe it would
be a great showcase to demonstrate to potential students’ what sort of things they could be
working on during their time at Abertay University.

Finally, one of the features of the cluster which will be of great use to the client is the
program SLURM which was implemented into the cluster during the project. The program
offers many features which will become useful if the cluster is expanded to include more
nodes. These features are:

1. SLURM can allow a cluster to be defined into partitions, this allows a user to section
off certain nodes to do different jobs at the same time as other partitions.

2. Even in the same partition multiple nodes can be put to do different jobs at the same
time.

3. Allows a user to track currently running jobs and how long they’ve been running.
4. Allows a user to see if all nodes are up or working as intended.
5. By using the SLURM “sbatch” command heterogeneous jobs8 can be submitted to

the cluster.

Listing all the features SLURM has would make the list too long, but simply put SLURM has
many features which would greatly assist the cluster in the future. As a whole the cluster is a
very flexible and usable system which can perform the jobs the client wanted to get from the
cluster.

Future Work

Due to COVID-19 we weren’t able to achieve all the tasks we set out to complete. This was
due to the need of physical access which is essential to complete some of the tasks which
were planned. Because of this, only the demo script was created to showcase the cluster's
capabilities, this reduction of the scope was agreed to by the client Ethan Bayne (see
appendix A - emails). The following other tasks were not completed:

1. Creation a tutorial script to take a user through the process of how to create and run
their own John The Ripper job on the cluster.

2. Creation of a “node expansion script” which would allow a user to easily add a new
node onto the cluster without having to change several configuration files manually.

These scripts were added to the scope because they would greatly benefit the cluster in
terms of ease of use and expandability in the future. Because of this any future work would
start with the creation and implementation of these scripts into the cluster.

We’d also look at the prospect of adding more scripts and or programs to the cluster to
improve its usability. When researching clusters the team found lots of projects which used
different types of interfaces to interact and control their cluster. One of the most interesting
interfaces found was a Webpage interface which could be used to control the cluster. In the
case of this cluster a Webpage interface could be used to upload files directly to the cluster,
where the user could continue to use the cluster from this webpage interface. This would
remove the need to have to manually place files onto the master node through a storage
medium, it would also reduce interaction with the terminal interface currently needed to
control and make changes to the cluster.

Other work that the team would’ve liked to added to the project would’ve been the addition of
more nodes to the cluster as a whole. This would be beneficial for multiple reasons, for one it
would use up more Raspberry Pis which are currently not being used by the client and put
them to good use. Secondly it would make the cluster faster at cracking passwords with the
added compute power, lastly with more nodes means that the cluster could be partitioned
more with SLURM which could allow more asynchronous tasks to be performed by the
cluster at once.

The final piece of future work we’d want to look at doing would be the addition of purpose
built housing for the Pi cluster. As it currently stands the cluster is powered using USB micro
B wires which are connected to a USB power hub, this along with the ethernet cables used
to connect the Pis to the switch this creates a cluster which isn’t as neat as it could be.
Figure 6 shows how the cluster looks in its current configuration.

Figure 6
Pi cluster set up.

While this setup works and can sit on a desk easily, it isn't practical. Keeping track of which
wire goes where and trying to move the cluster is an awkwardly difficult task. With a proper
housing built for it this problem could be easily mitigated. Also, with the chance of the cluster
becoming bigger in the future with more nodes being added, bringing with them more wires
and need for space, this problem will only become a more apparent issue meaning housing
for the cluster could become necessary.

Call to action

If there’s any more work the client would like performed on the cluster, team leader Neirin

McDonald would be happy to continue to work on it more in his spare time for academic year

2020/2021. If there’s any other issues with the cluster which can’t be fixed, or if there’s

something you’d like to know about the cluster that’s not covered in this whitepaper the team

can be contacted through these email addresses:

Ewan Scott - Spacehopper Liaison: 1700230@abertay.ac.uk

Neirin McDonald – Spacehopper team leader: 1701141@abertay.ac.uk

Jake Mills – Spacehopper hardware: 1203200@abertay.ac.uk

Stuart Rankin – Spacehopper minute taker: 1701198@abertay.ac.uk

mailto:1701141@abertay.ac.uk
mailto:1203200@abertay.ac.uk

References
1 Raspberry Pi (no date) Raspbian. Available at:
https://www.raspberrypi.org/downloads/raspbian/

2 University of Missouri-St. Louis (no date) Moore’s Law. Available at:

https://www.umsl.edu/~siegelj/information_theory/projects/Bajramovic/www.umsl.ed
u/_abdcf/Cs4890/link1.html (Accessed: 15 April 2020).

3 Knapton, S. (2017) “Discarded phones, computers and electronics behind world’s
fastest growing waste problem”, The Telegraph, 13 December. Available at:

https://www.telegraph.co.uk/science/2017/12/13/discarded-phones-computers-
electronics-behind-worlds-fastest/ (Accessed: 15 April 2020).

4 Vaute, V. (2018) “Recycling is not the answer to the e-waste crisis”, Forbes, 29
October. Available at:

https://www.forbes.com/sites/vianneyvaute/2018/10/29/recycling-is-not-the-answer-
to-the-e-waste-crisis/#7c27c7ee7381 (Accessed: 15 April 2020).

5 Electronics TakeBack Coalition (2013) Facts and figures on e-waste and recycling.
Available at:

http://www.electronicstakeback.com/wp-content/uploads/Facts-and-Figures-on-E-Waste-
and-Recycling.pdf (Accessed: 15 April 2020).

6 Document prepared and revised by Natalie Coull, Colin McLean, Andrea Szymkowiak

7 Graham, G., 2005. The White Paper FAQ (Frequently Asked Questions)/That White Paper Guy

– Gordon Graham. [online] Available at: https://www.thatwhitepaperguy.com/white-paper-
faq-frequently-asked-questions/#what_is> [Accessed 9 May 2016].

8 slurm (no date) Heterogenous Job Support, Available at:
https://slurm.schedmd.com/heterogeneous_jobs.html

9 Count upon security (May 07, 2015) Step-by-Step Clustering John the Ripper on Kali,

Available at:

https://countuponsecurity.com/2015/05/07/step-by-step-clustering-john-the-ripper-on-kali/

10 Pfister, G. (1998) In search of clusters. Upper Saddle RIver, NJ: Prentice Hall PTR.

https://www.raspberrypi.org/downloads/raspbian/
https://www.umsl.edu/~siegelj/information_theory/projects/Bajramovic/www.umsl.edu/_abdcf/Cs4890/link1.html
https://www.umsl.edu/~siegelj/information_theory/projects/Bajramovic/www.umsl.edu/_abdcf/Cs4890/link1.html
https://www.telegraph.co.uk/science/2017/12/13/discarded-phones-computers-electronics-behind-worlds-fastest/
https://www.telegraph.co.uk/science/2017/12/13/discarded-phones-computers-electronics-behind-worlds-fastest/
https://www.forbes.com/sites/vianneyvaute/2018/10/29/recycling-is-not-the-answer-to-the-e-waste-crisis/#7c27c7ee7381
https://www.forbes.com/sites/vianneyvaute/2018/10/29/recycling-is-not-the-answer-to-the-e-waste-crisis/#7c27c7ee7381
http://www.electronicstakeback.com/wp-content/uploads/Facts-and-Figures-on-E-Waste-and-Recycling.pdf
http://www.electronicstakeback.com/wp-content/uploads/Facts-and-Figures-on-E-Waste-and-Recycling.pdf
https://www.thatwhitepaperguy.com/white-paper-faq-frequently-asked-questions/#what_is
https://www.thatwhitepaperguy.com/white-paper-faq-frequently-asked-questions/#what_is
https://countuponsecurity.com/2015/05/07/step-by-step-clustering-john-the-ripper-on-kali/

Appendices

Appendix A - E-mails

Email from Ewan Scott to Ethan Bayne:

Reply from Ethan Bayne:

Confirmation from Ewan of current progress:

Confirmation of scope reduction:

Appendix B – Scripts

demo.py

File path: /clusterfs/john/scripts/demo.py

import os
import time
import subprocess

import atexit

def cancel(temp):
 os.system("scancel " + temp)

#Change to correct directory
os.chdir("/clusterfs/scripts/john")

#Clears John's cached cracked passwords
os.system("rm /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john.pot")

print("For demonstration purposes the Raspberry Pi's password 'raspberry' is
used.")

option = 0
while option not in ('1', '2'):
 option = str(input("1. Wordlist\n2. Incremental (Brute-Force)\n"))

if option == '1':
 #Cracks in wordlist mode
 jobid = str(subprocess.check_output("sbatch
/clusterfs/scripts/john/johnDemoWordlist.sh", shell=True))
else:
 #Cracks in brute-force mode
 jobid = str(subprocess.check_output("sbatch
/clusterfs/scripts/john/johnDemo.sh", shell=True))

#gets jobid from previous bash script output
split = jobid.split(" ")
jobid = split[-1]
jobid = jobid[0:-3]
jobid = jobid.strip()
print("Job ID = " + jobid)

#Cancels current job on quit
atexit.register(cancel, temp=jobid)

#Waits for slurm file to be created
while not os.path.exists("slurm-"+jobid+".out"):
 time.sleep(1)

#If file exists
if os.path.isfile("slurm-"+jobid+".out"):
 #Open output file and read into lines
 f = open("slurm-" + jobid + ".out", "r")
 lines = f.read().splitlines()
 #While nothing in file
 while not lines:
 #reread file
 lines = f.read().splitlines()

 #Loops until completed
 while(True):

 #If job not complete ("completed" not in final line")
 if "completed" not in lines[-1]:
 #Re open file and re read and wait a second to prevent pointless rereads
 f.close()
 f = open("slurm-" + jobid + ".out", "r")
 lines = f.read().splitlines()
 time.sleep(1)
 else:
 #If completed show output file to user
 os.system("cat /clusterfs/scripts/john/slurm-"+jobid+".out")
 break
 #Wait for input to close
 print("Enter anything to finish")
 input('')
 f.close()
else:
 print("Error! Can't find relevant slurm output file")
 raise ValueError("slurm-"+jobid++".out isn't a file!")

johnDemoWordlist.sh

/clusterfs/scripts/john/johnDemoWordlist.sh

#!/bin/bash
#SBATCH --ntasks=7

cd $SLURM_SUBMIT_DIR

mpiexec -n 7 /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john --
wordlist=/clusterfs/scripts/john/password.lst /clusterfs/scripts/john/demo.txt

johnDemo.sh

/clusterfs/scripts/john/johnDemo.sh

#!/bin/bash
#SBATCH --ntasks=7

cd $SLURM_SUBMIT_DIR

mpiexec -n 7 /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john --
incremental:Lower /clusterfs/scripts/john/demo.txt

benchmark.py

/clusterfs/scripts/benchmark/benchmark.py

import os
import time
import subprocess

#Change to correct directory

os.chdir("/clusterfs/scripts/benchmark")

#Clears John's cached cracked passwords
os.system("rm /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john.pot")

#Benchmarks 10 times
benchmarks = []
counter = 0
while counter < 10:
 os.system("rm /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john.pot")
 start = time.time()
 os.system("sbatch wordlistBenchmark.sh")
 counter += 1

 print("Running benchmark number " + str(counter))

 output = str(subprocess.check_output("squeue", shell=True))

 output = output.split("\\n")

 while len(output) != 2:
 output = str(subprocess.check_output("squeue", shell=True)).split("\\n")
 end = time.time()
 benchmarks.append(end-start)

#Puts in order
benchmarks.sort()

size = len(benchmarks)
print(benchmarks)

#Removes Slurm Output files
os.system("rm slurm-*")

#Mean Calculation
average = 0.0
for i in benchmarks:
 average += i

average = average/size

#Median Calculation
if size % 2 == 0:
 median1 = benchmarks[size//2]
 median2 = benchmarks[size//2 - 1]
 median = (median1 + median2)/2
else:
 median = benchmarks[size//2]

#Displays averages
print("The mean is: " + str(average))
print("The median is: " + str(median))

wordlistBenchmark.sh

/clusterfs/scripts/benchmark/wordlistBenchmark.sh

#!/bin/bash
#SBATCH --nodes=7

cd $SLURM_SUBMIT_DIR

mpiexec -n 7 /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john --
wordlist=/clusterfs/scripts/john/password.lst /clusterfs/scripts/john/demo.txt

johnTest.sh

/clusterfs/scripts/benchmark/johnTest.sh

#!/bin/bash
#SBATCH --ntasks=7

cd $SLURM_SUBMIT_DIR

mpiexec -n 7 /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john --test

Appendix C - Results

johnTest.sh Result

/clusterfs/scripts/benchmark/johnTest.sh Result

MPI in use, disabling OMP (see doc/README.mpi)
Node numbers 1-7 of 7 (MPI)
Benchmarking: descrypt, traditional crypt(3) [DES 32/32]... (7xMPI) DONE
Warning: "Many salts" test limited: 56/256
Many salts: 522240 c/s real, 532897 c/s virtual
Only one salt: 496640 c/s real, 501656 c/s virtual

Benchmarking: bsdicrypt, BSDI crypt(3) ("_J9..", 725 iterations) [DES 32/32]...
(7xMPI) DONE
Speed for cost 1 (iteration count) of 725
Warning: "Many salts" test limited: 33/256
Many salts: 17932 c/s real, 18112 c/s virtual
Only one salt: 17920 c/s real, 17920 c/s virtual

Benchmarking: md5crypt, crypt(3) 1 (and variants) [MD5 32/32 X2]... (7xMPI)
DONE
Warning: "Many salts" test limited: 4/256
Many salts: 8533 c/s real, 8694 c/s virtual
Only one salt: 8533 c/s real, 8613 c/s virtual

Benchmarking: md5crypt-long, crypt(3) 1 (and variants) [MD5 32/32]... (7xMPI)
DONE
Raw: 4876 c/s real, 4876 c/s virtual

Benchmarking: bcrypt ("$2a$05", 32 iterations) [Blowfish 32/32]... (7xMPI) DONE
Speed for cost 1 (iteration count) of 32
Raw: 457 c/s real, 457 c/s virtual

Comparison john --test Result

Ran with Open Multiprocessing (OpenMP)

Benchmarking: descrypt, traditional crypt(3) [DES 128/128 AVX]... (16xOMP)
DONE

Many salts: 42991K c/s real, 3068K c/s virtual

Only one salt: 29163K c/s real, 2342K c/s virtual

Benchmarking: bsdicrypt, BSDI crypt(3) ("_J9..", 725 iterations) [DES 128/128
AVX]... (16xOMP) DONE

Speed for cost 1 (iteration count) of 725

Many salts: 1370K c/s real, 99816 c/s virtual

Only one salt: 1282K c/s real, 93580 c/s virtual

Benchmarking: md5crypt, crypt(3) 1 (and variants) [MD5 128/128 AVX 4x3]...
(16xOMP) DONE

Many salts: 397056 c/s real, 27650 c/s virtual

Only one salt: 393984 c/s real, 27493 c/s virtual

Benchmarking: md5crypt-long, crypt(3) 1 (and variants) [MD5 32/64]...
(16xOMP) DONE

Raw: 84992 c/s real, 5998 c/s virtual

Benchmarking: bcrypt ("$2a$05", 32 iterations) [Blowfish 32/64 X3]... (16xOMP)
DONE

Speed for cost 1 (iteration count) of 32

Raw: 14544 c/s real, 1032 c/s virtual

Appendix D - Burndown Chart

Appendix E Gantt Chart

Appendix F - Deliverables & requirements

Appendix G – Minutes

Spacehopper -meeting 1

2020-01-24

Start Time: 13:00

End Time: 14:00

Hacklab, Abertay University

Attendees: Stuart Rankin, Jake Mills, Ewan Scott, Neirin MacDonald

Absentees:

Quorum Present

Agenda

• Investigate Router

• Discuss with Ethan about hardware needs

• Plan work to be done

Notes

Team discussed hardware that is still required

Ewan communicated needs with Ethan

After Neirin got to the meeting the team gained a new switch to replace the

broken one and the team gained 2 more Pis as well as components to go with

them such as ethernet and power cables.

Atmosphere and Challenges

The atmosphere was optimistic and excited to get started

Main challenge for the team was Neirins absence as team leader for the first

half of the meeting.

Next Meeting

2020-01-31

Start Time: 13:00

Hacklab, Abertay University

Next Meeting Agenda

• Discuss progress made

• Discuss any challenges that come up

Spacehopper – meeting 2

2020-01-31

Start Time: 14:00

End Time: 14:35

Hacklab, Abertay University

Attendees: Stuart Rankin, Jake Mills, Ewan Scott

Absentees: Neirin MacDonald

Quorum Present

Agenda

• Discuss Progress made

• Discuss any challenges

Notes

Jake caught attendees up on the progress he has made, configuring and

labelling the Pi's

Ewan and Stuart discussed/decided on what to work on whilst the cluster is

being configured. Ewan will work on the document and keep researching

OpenMPI/SLURM. Stuart is to begin work on the python scripts and also

continue OpenMPI/SLURM research so the knowledge can easily be applied

once cluster is set up.

Atmosphere and Challenges

The atmosphere was similar to last week's meeting. With no significant

challenges appearing, Neirin's absence did not majorly affect the atmosphere

and Neirin was easily caught up through the messaging app 'Signal'.

Next Meeting

2020-02-07

Start Time: 14:00

Hacklab, University

Next Meeting Agenda

• Discuss Progress made

• Discuss any challenges

• Approve previous minutes

Spacehopper – meeting 3

2020-02-07

Start Time: 12:45

End Time: 13:30

Hacklab, Abertay University

Attendees: Stuart Rankin, Jake Mills, Neirin MacDonald, Ewan Scott

Absentees:

Quorum Present

Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Notes

Jake explained about the issue he had run into of the planned Master Node

failing to boot/display. Ewan and Jake went down to get another Pi however

the technician was out so instead Jake will continue with one of the slave Pi's

becoming the Master for now.

Ewan talked about what work he had made on the document. Stuart discussed

the progress he had made on the scripts and also explained the issue of

scripting for the cluster without the cluster being completed i.e what user

inputs will be required etc.

Atmosphere and Challenges

The atmosphere was good despite the challenges the have popped up the

team are confident they can continue to stay on schedule without sacrificing

much. The Pi's should be flashed by Monday so work should be able to

continue.

Next Meeting

2020-02-14

Start Time: 13:00

Hacklab, Abertay University

Next Meeting Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Spacehopper - meeting 4

2020-02-14

Start Time: 16:15

End Time: 16:50

Hacklab, Abertay University

Attendees: Stuart Rankin, Jake Mills, Ewan Scott, Neirin MacDonald

Absentees:

Quorum Present

Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Notes

Jake discussed the progress he had made with the cluster.

Ewan and Neirin went down to get more Pi's however the technician wasn't in.

The team discussed what work needed to be done on the document.

Atmosphere and Challenges

The atmosphere was good as progress was being made and the team are on

schedule. There were no significant challenges the came up during the

meeting.

Next Meeting

2020-02-21

Start Time: 13:00

Hacklab, Abertay University

Next Meeting Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Spacehopper - meeting 5

2020-02-21

Start Time: 14:00

End Time: 15:00

Hacklab, Abertay University

Attendees: Stuart Rankin, Jake Mills, Ewan Scott, Neirin MacDonald

Absentees:

Quorum Present

Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Notes

Neirin explained how he had managed to get the Pi that wasn't working to

boot. Jake spoke about the progress he had made on configuring SLURM on

the other Pi's. Next meeting was re-arranged due to Securi-Tay

Atmosphere and Challenges

The atmosphere was positive with the knowledge that the Pi was fixed and

now working. There were no challenges with the team just the SLURM

configuration of the cluster.

Next Meeting

2020-03-03

Start Time: 14:00

Hacklab, Abertay University

Next Meeting Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Spacehopper – meeting 6

2020-03-03

Start Time: 13:30

End Time: 14:00

Hacklab, Abertay University

Attendees: Stuart Rankin, Neirin MacDonald, Jake Mills, Ewan Scott

Absentees:

Quorum Present

Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Notes

Jake explained how the issues he was having with SLURM were caused by the

switch setting dynamic IP addresses for the Pi when it required fixed IP

addresses. Neirin and Jake went to see the technician in order to get either a

router or a switch that didn't force dynamic addresses. Ewan will email either

technician or client to organise getting switch or router.

Atmosphere and Challenges

The atmosphere wasn't as good as previous meetings due to the delay caused

by the switch. There was no challenges between members only the switch

delay.

Next Meeting

2020-03-06

Start Time: 13:30

Hacklab, Abertay University

Next Meeting Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

• Discuss if the switch issue has been solved

Spacehopper – meeting 7

2020-03-06

Start Time: 14:00

End Time: 14:30

Hacklab, Abertay University

Attendees: Stuart Rankin, Neirin MacDonald, Ewan Scott

Absentees: Jake Mills

Quorum Present

Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Notes

Jake, Neirin and Ewan had met the day prior and had managed to get a new

switch. The new switch solved the issue of dynamic IPs.

According to Jake we still needed a router as we had to configure some

settings however he wasn't there to explain further.

With the delays to the configuration, Stuart decided to try and start some of

the scripts which could then be slightly changed or fixed when the cluster is set

up.

Atmosphere and Challenges

The atmosphere was good with the dynamic IPs being fixed.

There was no other challenge other than the absence of Jake.

Next Meeting

2020-03-13

Start Time: 14:00

Hacklab, Abertay University

Next Meeting Agenda

• Approve Minutes

• Discuss Progress

• Discuss Challenges

Appendix I - Manual

Reference Tutorial - https://medium.com/@glmdev/building-a-raspberry-pi-cluster-
784f0df9afbd

This manual is designed so as to be a step-by-step guide to replicating the project. However
it can also be used for giving a better understanding of the cluster and how it works while
also providing reference for individual tasks.

1. Assigning a Static IP Address
For ease of use IPs should be incremented per node, for instance:
node1 is ip xxx.xxx.xxx.101, node2 is ip xxx.xxx.xxx.102 and so on.

a. Open dhcpcd.conf :

sudo nano /etc/dhcpcd.conf

b. Edit the fields under interface eth0 to match the network configuration and
assign a free IP address.

2. Accessing the Raspberry Pi Settings Interface

a. sudo raspi-config

b. Select “Expand filesystem”, this will allow the Pi to use the rest of the free
space on the Pi.

c. Go back to the first page and select “Localisation Options”, then change
“Timezone” and set this to your local time zone.

d. Go back to the first page and select “Interfacing Options”, then select “SSH”
and enable this feature.

3. Setting Hostnames

Hostnames in the cluster have to all be different. For example, you could have the
cluster set up as “Master, RPI1, RPI2, RPI3….” and so on. For an easier time during
SLURM configuration, it's recommended that the work nodes should be named
similarly like in the example with a number increasing on the end.

a. Perform the following steps for each node.
b. sudo hostname <hostname here>

c. Open the hostname file and edit accordingly :
sudo nano /etc/hostname

d. Open the hosts file and edit accordingly :
sudo nano /etc/hosts

4. Sync System Time

The time on all nodes need to be the same or the cluster wont work!
a. sudo apt install ntpdate -y

b. sudo reboot

5. Connecting to Pi with SSH
This allows the user to control the cluster from one computer.

a. ssh pi@<node ip>

https://medium.com/@glmdev/building-a-raspberry-pi-cluster-784f0df9afbd
https://medium.com/@glmdev/building-a-raspberry-pi-cluster-784f0df9afbd

6. Locate Flash Drive for Shared Storage
This following command is used to find the location of the flash drive. It is usually
located in the directory /dev/sda and can be identified by its size.

a. lsblk

7. Formatting Flash Drive to ext4 Format

During this section be mindful not to format the wrong location.
a. sudo mkfs.ext4 /dev/<flash drive location>

i. For example, if the flash drive was located in /dev/sda, the command
would be <sudo mkfs.ext4 /dev/sda>.

8. Creating a Mount Directory

The following commands must be run on the Master node.
a. sudo mkdir /clusterfs

b. sudo chown nobody.nogroup -R /clusterfs

c. sudo chmod 777 -R /clusterfs

9. Enabling Automatic Booting

a. Input the command blkid and copy the UUID from the flash drive.

b. Navigate to the fstab file and add the line below.
c. UUID=xxx /clusterfs ext4 defaults 0 2

d. Mount the flash drive.
e. sudo mount -a

10. Set Loose Permissions

a. sudo chown nobody.nogroup -R /clusterfs

b. sudo chmod -R 766 /clusterfs

11. NFS

a. Exporting NFS
i. Perform the following sections on the Master node.

ii. Download and install the NFS server.
iii. sudo apt install nfs-kernel-server -y

iv. Navigate to exports file
v. sudo nano /etc/exports

vi. Add the following line below - all one line - then save the file.
vii. /clusterfs <node

ip>(rw,sync,no_root_squash,no_subtree_check)

viii. Update the NFS kernel server.
ix. sudo exportfs -a

b. Mounting NFS on Compute Nodes

i. Using the following commands to install NFS on each node added to
the cluster. These will create the shared storage directory and set
permissions.

ii. sudo apt install nfs-common -y

1. sudo mkdir /clusterfs

2. sudo chown nobody.nogroup -R /clusterfs

3. sudo chmod -R 777 /clusterfs

iii. Navigate to fstab file:
sudo nano etc/fstab

iv. Add the following line below - all one line - then save the file. This will

allow automatic mounting of the shared storage whenever the cluster
is turned on.

v. <master node ip>:/clusterfs /clusters nfs defaults 0
0

vi. Mount the shared storage.
vii. sudo mount -a

viii. Files can now be accessed and created in /clusterfs by nodes.

12. SLURM

a. Master Node Configuration

i. Open /etc/hosts in a text editor

1. sudo nano /etc/hosts

2. Add the following lines:-
a. <node 2 ip> <node 2 hostname>

i. <node 3 ip> <node 3 hostname>

ii. <node 4 ip> <node 4 hostname>
Keep adding for the amount of nodes you have.

ii. Install SLURM Controller

1. sudo apt install slurm-wlm -y

iii. Copy and move default SLURM configuration file

1. cd /etc/slurm-llnl

2. mv slurm.conf.simple slurm.conf

3. cp /usr/share/doc/slurm-
client/examples/slurm.conf.simple.gz .

4. gzip -d slurm.conf.simple.gz

iv. Edit SLURM Configuration File

1. Open SLURM configuration file in text editor
2. sudo nano /etc/slurm-llnl/slurm.conf

3. Edit the corresponding sections of the file to match below.

a. SlurmctldHost=Master(<Master ip>)

b. SelectType=select/cons_res

i. SelectTypeParameters=CR_Core

c. NodeName=Master NodeAddr=<Master ip>

CPUs=4 State=UNKNOWN

i. NodeName=<node 2 hostname>
NodeAddr=<node 2 ip> CPUs=4

State=UNKNOWN

ii. NodeName=<node 3 hostname>
NodeAddr=<node 3 ip> CPUs=4

State=UNKNOWN

iii. NodeName=<node 4 hostname>
NodeAddr=<node 4 ip> CPUs=4

State=UNKNOWN

d. PartitionName=mycluster Nodes=RPI[2-4]

Default=YES MaxTime=INFINITE State=UP

v. Configure Resource Access for Jobs

1. Create the file cgroup.conf
2. sudo nano /etc/slurm-llnl/cgroup.conf

3. Add the following to the empty file

a. CgroupMountpoint="/sys/fs/cgroup"

i. CgroupAutomount=yes
ii. CgroupReleaseAgentDir="/etc/slurm-llnl/cgroup"

iii. AllowedDevicesFile="/etc/slurm-
llnl/cgroup_allowed_devices_file.conf"

iv. ConstrainCores=no
v. TaskAffinity=no

vi. ConstrainRAMSpace=yes
vii. ConstrainSwapSpace=no

viii. ConstrainDevices=no
ix. AllowedRamSpace=100
x. AllowedSwapSpace=0

xi. MaxRAMPercent=100
xii. MaxSwapPercent=100

xiii. MinRAMSpace=30

4. The following commands will configure cgroup kernel isolation,
a Linux feature that will restrict the system resources that jobs
have access to.

a. sudo nano /etc/slurm-
llnl/cgroup_allowed_devices_file.conf

5. Add the following to the empty file

a. /dev/null

i. /dev/urandom
ii. /dev/zero

iii. /dev/sda*
iv. /dev/cpu/*/*
v. /dev/pts/*

vi. /clusterfs*

vi. Copy The Completed Configuration Files to Shared Storage

1. sudo cp slurm.conf cgroup.conf
cgroup_allowed_devices_file.conf /clusterfs

a. sudo cp /etc/munge/munge.key /clusterfs

vii. Starting SLURM Controller

1. Start MUNGE

a. Sudo systemctl enable munge

b. Sudo systemctl start munge

2. Start SLURM Daemon

a. Sudo systemctl enable slurmd

b. Sudo systemctl start slurm

3. Start SLURM Controller Daemon

a. Sudo systemctl enable slurmctld

b. Sudo systemctl start slurmctld

b. Compute Node Configuration

i. Perform the following steps for each node you wish to add to the

cluster.

ii. Install the SLURM Client

1. Sudo apt install slurmd slurm-client -y

iii. Update /etc/hosts file to include all nodes not already listed, excluding

the node currently being configured. See example below.

1. This particular example assumes the node is RPI2.

a. <Master ip> Master
b. <RPI3 ip> RPI3
c. <RPI4 ip> RPI4

d. Once the file has been updated to include all other
node details this step is complete.

iv. Update the node with the configuration file from shared storage
1. sudo cp /clusterfs/munge.key

/etc/munge/munge.key

2. sudo cp /clusterfs/slurm.conf /etc/slurm-
llnl/slurm.conf

3. sudo cp /clusterfs/cgroup* /etc/slurm-llnl

v. Start Munge Services

1. sudo systemctl enable munge

2. sudo systemctl start munge

vi. Start SLURM Daemon

1. sudo systemctl enable slurmd

2. sudo systemctl start slurm

vii. Test Munge

1. ssh pi@Master munge -n | unmunge

2. Go over all previous steps in the Compute Node Configuration
section again if there are any errors to ensure that no mistakes
were made.

c. Test SLURM

i. The following steps are run on the Master node.
ii. Replace X with the number of nodes that are currently running.
iii. srun --nodes=X hostname

iv. If the test is successful then all active nodes will output their name.

13. Install OpenMPI

a. Run the following command on the master node.
b. sudo srun --nodes=3 apt install openmpi-bin openmpi-

common libopenmpi3 libopenmpi-dev -y

14. Install Python

a. Run the following commands on the master node. These will install all

necessary dependencies for Python.
b. sudo apt install -y build-essential python-dev python-

setuptools python-pip python-smbus libncursesw5-dev

libgdbm-dev libc6-dev zlib1g-dev libsqlite3-dev tk-dev

libssl-dev openssl libffi-dev

c. srun --nodes=<total number of nodes in cluster> sudo apt

install libatlas-base-dev; (The nodes can’t run Python without this)

d. Navigate to the /clusterfs directory and create a new directory called ‘build’.
e. cd /clusterfs && mkdir build && cd build

f. Download the Python package from the internet.
g. wget https://www.python.org/ftp/python/3.7.3/Python-

3.7.3.tgz

h. Decompress the .tgz file.
i. tar xvzf Python-3.7.3.tgz

j. Navigate to the unpacked Python directory and create a new directory called
/clusterfs/usr, then configure the Python install with PIP and ensure that it’s
installed to /clusterfs/usr. These steps may take some time to run.

k. cd Python-3.7.3

l. mkdir /clusterfs/usr

m. ./configure \ --enable-optimizations \ --
prefix=/clusterfs/usr \ --with-ensurepip=install

n. make

o. make install

https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz
https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz

p. Use the following command to verify the Python installation. If successful
each node will output “Hello”.

q. srun --nodes=<number of nodes in cluster>
/clusterfs/usr/bin/python3 -c "print('Hello')"

r. This following command verifies the PIP installation.
s. srun --nodes=1 /clusterfs/usr/bin/pip3 --version

t. If the last two commands work, Python has been successfully installed.

15. Installing John The Ripper

a.
John The Ripper has MPI support built into it, it just needs to be enabled with
./configure. Because of this it only needs to be installed on the master node
as John can hand out jobs to the nodes even if they don't have John installed.

b. The process of installing John The Ripper is similar to that of Python. First,

run the following commands to create an install location for John.
c. cd /clusterfs && mkdir john && cd john

d. Download the John Jumbo package.
e. wget https://www.openwall.com/john/k/john-1.9.0-jumbo-

1.tar.gz

f. Unpack the tarball.
g. tar xvzf john-1.9.0-jumbo-1.tar.gz

h. Navigate to the unpacked John directory and enable MPI support before

proceeding with the installation.
i. cd john-1.9.0-jumbo-1/src/

j. ./configure --enable-mpi

k. make

l. make install

m. Verify the installation by running the following command. If the command

returns no errors the John installation has been completed successfully.
n. srun --ntasks=7 mpiexec -n 7 /clusterfs/johnBuild/john-

1.9.0-jumbo-1/run/john --test

How to Write Cluster Scripts

This section explains how to create scripts for the cluster, how to control the cluster and
some useful commands for the cluster.

If the NFS share (/clusterfs) has not been mounted on the nodes once the cluster is power
on, SSH (Username = “pi”, password = “raspberry”) into every node and enter the following
command:
 sudo mount -a

 This mounts all filesystems mentioned in fstab, specifically the NFS.

https://www.openwall.com/john/k/john-1.9.0-jumbo-1.tar.gz
https://www.openwall.com/john/k/john-1.9.0-jumbo-1.tar.gz
https://www.openwall.com/john/k/john-1.9.0-jumbo-1.tar.gz

The next step is one the master, run the following command:
sudo scontrol update nodename=RPI[1-4] state=IDLE

 This changes all the SLURM states to IDLE (i.e up). If more nodes have
been added change 1-4 to the correct number of nodes in the cluster.

With this done the cluster should be up and running, if not refer to the SLURM
documentation or for any other errors such as OpenMPI errors or John the Ripper refer to
the relevant documentation or the useful commands section.

The cluster can then be used to crack passwords. To do this you can either use a SLURM
batch script or the command SRUN. The following script, johnDemo.sh can be used as a
reference. The --ntasks flag refers to the number of cores to use but there are many flags
that can be used. For example, --nodes which refers to the number of nodes so --nodes 3
would use one core on 3 nodes so if there were 4 cores on the node it would only use one.

#!/bin/bash
#SBATCH --ntasks=7

cd $SLURM_SUBMIT_DIR

mpiexec -n 7 /clusterfs/johnBuild/john-1.9.0-jumbo-1/run/john --

wordlist=/clusterfs/scripts/john/password.lst

/clusterfs/scripts/john/demo.txt

 It is important to keep the mpiexec n flag and the sbatch ntasks/nodes the

same number.

mpiexec must run John the Ripper in either SLURM batch file or srun to use John the Ripper
with OpenMPI.

A SLURM batch file is then run using sbatch.

sbatch /clusterfs/scripts/john/johnDemo.sh

The command srun can be used to submit a job in real time using the same flags. Below is
the srun variation of johnDemo.sh

srun –-ntasks=7 mpiexec -n 7 /clusterfs/johnBuild/john-1.9.0-jumbo-

1/run/john –wordlist=/clusterfs/scripts/john/password.lst

/clusterfs/scripts/john/demo.txt

Useful Commands

sinfo
 Gives information about the cluster’s current state and other information.

scontrol show node <node name>
 Shows why a node is down.

sudo scontrol update nodename=<node name>[<range>] state=IDLE
 Sets state of all nodes in the cluster to IDLE (i.e up).

htop
 Shows all processes running on a device.

sudo mount -a
 Mounts all devices in fstab (used for NFS).

srun --nodes=<number of nodes> hostname
 Simple test for nodes.

srun --nodes=<number of nodes> /clusterfs/usr/bin/python3 -c

"print('Hello')"
 Simple python test on cluster.

sudo dphys-swapfile swapoff
sudo nano /etc/dphys-swapfile
 Edit CONF_SWAPSIZE to desired amount
sudo dphys-swapfile setup
sudo dphys-swapfile swapon
 Increase/Change swapfile (a swap file allows an OS to use hard disk space

to simulate extra memory) on a node. Useful due to the limited memory on

Raspberry Pi’s

